In this paper, a value-based global optimization (VGO) algorithm is introduced. The algorithm uses kriging-like surrogate models and a sequential sampling strategy based on value of information (VoI) to optimize an objective characterized by multiple analysis models with different accuracies. VGO builds on two main contributions. The first contribution is a novel surrogate modeling method that accommodates data from any number of different analysis models with varying accuracy and cost. Rather than interpolating, it fits a model to the data, giving more weight to more accurate data. The second contribution is the use of VoI as a new metric for guiding the sequential sampling process for global optimization. Based on information about the cost and accuracy of each available model, predictions from the current surrogate model are used to determine where to sample next and with what level of accuracy. The cost of further analysis is explicitly taken into account during the optimization process, and no further analysis occurs if the expected value of the new information is negative. In this paper, we present the details of the VGO algorithm and, using a suite of randomly generated test cases, compare its performance with the performance of the efficient global optimization (EGO) algorithm (Jones, D. R., Matthias, S., and Welch, W. J., 1998, “Efficient Global Optimization of Expensive Black-Box Functions,” J. Global Optim., 13(4), pp. 455–492). Results indicate that the VGO algorithm performs better than EGO in terms of overall expected utility—on average, the same quality solution is achieved at a lower cost, or a better solution is achieved at the same cost.

References

References
1.
Von Neumann
,
J.
, and
Morgenstern
,
O.
,
1980
,
Theory of Games and Economic Behavior
,
Princeton University Press
,
Princeton, NJ
.
2.
Lewis
,
K. E.
,
Chen
,
W.
, and
Schmidt
,
L. C.
,
2006
,
Decision Making in Engineering Design
,
American Society of Mechanical Engineers
,
New York
.
3.
Thompson
,
S. C.
, and
Paredis
,
C. J. J.
,
2010
, “
An Investigation into the Decision Analysis of Design Process Decisions
,”
ASME J. Mech. Des.
,
132
(
12
), p. 121009.10.1115/1.4002969
4.
Jones
,
D. R.
,
Matthias
,
S.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
5.
Moore
,
R. A.
,
Kerzhner
,
A. A.
, and
Paredis
,
C. J. J.
,
2009
, “
Model-Based Optimization of a Hydraulic Backhoe Using Multi-Attribute Utility Theory
,”
SAE Int. J. Mater. Manuf.
,
2
(
1
), pp.
298
309
.
6.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.10.1023/A:1012771025575
7.
Eldred
,
M. S.
,
Giunta
,
A. A.
,
Wojtkiewicz
,
S. F.
, and
Trucano
,
T. G.
,
2002
, “
Formulations for Surrogate-Based Optimization Under Uncertainty
,” AIAA Paper No. 2002–5585, Atlanta, GA, 189(194).
8.
Ong
,
Y. S.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Wong
,
K. W.
,
2004
, “
Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems
,”
Knowledge Incorporation in Evolutionary Compuation
,
Springer Verlag
, Springer-Verlag Berlin Heidelberg 2005.
9.
Sacks
,
J. S.
,
Susannah
,
B.
, and
Welch
,
W. J.
,
1989
, “
Designs for Computer Experiments
,”
Technometrics
,
31
(
1
), pp.
41
47
.10.1080/00401706.1989.10488474
10.
Sacks
,
J.
,
Welch
,
W. J.
,
Mictchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statist. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
11.
Shan
,
S. W.
, and
Gary
,
G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(
5
), p. 051009.10.1115/1.4001597
12.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
13.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
,
1992
, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
,
34
(
1
), pp.
15
25
.10.2307/1269548
14.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
22
(
2
), pp.
239
245
.
15.
Xiong
,
F.
,
Xiong
,
Y.
,
Chen
,
W.
, and
Yang
,
S.
,
2009
, “
Optimizing Latin Hypercube Design for Sequential Sampling of Computer Experiments
,”
Eng. Optim.
,
41
(
8
), pp.
793
810
.10.1080/03052150902852999
16.
Handcock
,
M. S.
,
1991
, “
On Cascading Latin Hypercube Designs and Additive Models for Experiments
,”
Commun. Stat. Theory Methods
,
20
(
2
), pp.
417
439
.10.1080/03610929108830507
17.
Tang
,
B.
,
1993
, “
Orthogonal Array-Based Latin Hypercubes
,”
J. Am. Stat. Assoc.
,
88
(
424
), pp.
1392
1397
.10.1080/01621459.1993.10476423
18.
Joseph
,
V. R.
, and
Hung
,
Y.
,
2008
, “
Orthogonal-Maximin Latin Hypercube Designs
,”
Statistica Sinica
,
18
(
1
), pp.
171
186
.
19.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscip. Optim.
,
32
(
5
), pp.
369
382
.10.1007/s00158-005-0587-0
20.
Ginsbourger
,
D.
,
Le Riche
,
R.
, and
Carraro
,
L.
,
2008
, “
A Multi-Points Criterion for Deterministic Parallel Global Optimization Based on Gaussian Processes
.” Available at: http://hal.archives-ouvertes.fr/hal-00260579
21.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
22.
Paredis
,
C. J. J.
,
1996
, “
An Agent-Based Approach to the Design of Rapidly Deployable Fault Tolerant Manipulators
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
23.
Alexandrov
,
N. M.
,
Lewis
,
R. M.
,
Gumbert
,
C. R.
,
Green
,
L. L.
, and
Newman
,
P. A.
,
1999
, “
Optimization With Variable-Fidelity Models Applied to Wing Design
,” Institute for Computer Applications in Science and Engineering, Hampton, VA, Report No. NASA/CR-1999-209826.
24.
Schmit
,
L. A.
, and
Farshi
,
B.
,
1974
, “
Some Approximation Concepts for Structural Synthesis
,”
AIAA J.
,
12
(
5
), pp.
692
699
.10.2514/3.49321
25.
Gano
,
S. E.
,
Perez
, V
. M.
,
Renaud
,
J. E.
, and
Batill
,
S. M.
,
2004
, “
Multilevel Variable Fidelity Optimization of a Morphing Unmanned Aerial Vehicle
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference
, Palm Springs, CA.
26.
Le Moigne
,
A.
, and
Qin
,
N.
,
2004
, “
Variable-Fidelity Aerodynamic Optimization for Turbulent Flows Using a Discrete Adjoint Formulation
,”
AIAA J.
,
42
(
7
), pp.
1281
1292
.10.2514/1.2109
27.
Hays
,
R.
, and
Singer
,
M.
,
1989
,
Simulation Fidelity in Training System Design: Bridging the Gap between Reality and Training
,
Springer-Verlag
,
New York
.
28.
Cellier
,
F. E.
,
1991
,
Continuous System Modeling
,
Springer-Verlag
,
New York
.
29.
Gurnani
,
A.
,
Ferguson
,
S.
,
Lewis
,
K.
, and
Donndelinger
,
J.
,
2006
, “
A Constraint-Based Approach to Feasibility Assessment in Preliminary Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
20
(
4
), pp.
351
367
.
30.
Paredis
,
C. J. J.
, and
Khosla
,
P. K.
,
1997
, “
Agent-Based Design of Fault Tolerant Manipulators for Satellite Docking
,”
Proceedings of the 1997 IEEE Conference on Robotics and Automation
, Albuquerque, NM, Vol.
4
, pp.
3473
3480
.
31.
Bakr
,
M. H.
, and
Bandler
,
J. W.
,
2000
, “
Review of the Space Mapping Approach to Engineering Optimization and Modeling
,”
Optim. Eng.
,
1
(
3
), pp.
241
276
.10.1023/A:1010000106286
32.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
,
2001
, “
An Overview of First-Order Model Management for Engineering Optimization
,”
Optim. Eng.
,
2
(
4
), pp.
413
430
.10.1023/A:1016042505922
33.
Alexandrov
,
N. M.
,
Lewis
,
R. M.
,
Gumbert
,
C. R.
,
Green
,
L. L.
, and
Newman
,
P. A.
,
2001
, “
Approximation and Model Management in Aerodynamic Optimization With Variable-Fidelity Models
,”
J. Aircraft
,
38
(
6
), pp.
1093
1101
.10.2514/2.2877
34.
Moore
,
R. A.
,
2009
, “
Variable Fidelity Modeling as Applied to Trajectory Optimization for a Hydraulic Backhoe
,” Masters thesis, Georgia Institute of Technology, Atlanta, GA.
35.
Rodriguez
,
J. F.
, and
Renaud
,
J. E.
,
1998
, “
Convergence of Trust Region Augmented Lagrangian Methods Using Variable Fidelity Approximation Data
,”
Struct. Optim.
,
15
(
3
), pp.
141
156
.10.1007/BF01203525
36.
Rodriguez
,
J. F.
,
Perez
,
V. M.
,
Padmanabhan
,
D.
, and
Renaud
,
J. E.
,
2001
, “
Sequential Approximate Optimization Using Variable Fidelity Response Surface Approximations
,”
Struct. Multidiscip. Optim.
,
22
(
1
), pp.
23
34
.
37.
Xia
,
L.
, and
Gao
,
Z.-H.
,
2006
, “
Application of Variable-Fidelity Models to Aerodynamic Optimization
,”
Appl. Math. Mech.
,
27
(
8
), pp.
1089
1095
.10.1007/s10483-006-0809-z
38.
Lawrence
,
D. B.
,
1999
,
The Economic Value of Information
,
Springer Science+Business Media
,
New York
.
39.
Howard
,
R.
,
1966
, “
Information Value Theory
,”
IEEE Trans. Syst. Sci. Cybernet.
,
SSC-2
(
1
), pp.
779
783
.
40.
Brathwaite
,
J.
, and
Saleh
,
J. H.
,
2009
, “
Value-Centric Framework and Pareto Optimality for Design and Acquisition of Communication Satellites
,”
Int. J. Satellite Commun.
,
27
(
6
), pp.
330
348
.10.1002/sat.956
41.
Cheung
,
J.
,
Scanlan
,
J.
,
Wong
,
J.
,
Forrester
,
J.
,
Eres
,
H.
,
Collopy
,
P.
,
Hollingsworth
,
P.
,
Wiseall
,
S.
, and
Briceno
,
S.
,
2010
, “
Application of Value-Driven Design to Commercial Aero-Engine System
,”
10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference
, Fort Worth, TX.
42.
Collopy
,
P.
, and
Hollingsworth
,
P.
,
2009
,
Value-Driven Design
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp.
2009
7099
.
43.
Hazelrigg
,
G. A.
,
2012
, Fundamentals of Decision Making for Engineering Design and Systems Engineering. Available at: http://www.engineeringdecisionmaking.com/
44.
Cressie
,
N. A. C.
,
1993
,
Statistics for Spatial Data
,
John Wiley & Sons, Inc.
,
New York
.
45.
Gano
,
S. E.
,
Renaud
,
J. E.
,
Martin
,
J. D.
,
Simpson
,
T. W.
,
2005
, “
Update Strategies for Kriging Models for Use in Variable Fidelity Optimization
,”
1st AIAA Multidisciplinary Design Optimization Specialist Conference
, Austin, TX.
46.
Handcock
,
M. S. S.
, and
Michael
,
L.
,
1993
, “
A Bayesian Analysis of Kriging
,”
Technometrics
,
35
(
4
), pp.
403
410
.10.1080/00401706.1993.10485354
47.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
,
2002
, “
Dace: A Matlab Kriging Toolbox
,” Technical University of Denmark, Report No. IMM-TR-2002-12.
48.
Ankenman
,
B.
,
Nelson
,
B. L.
, and
Staum
,
J.
,
2008
, “
Stochastic Kriging for Simulation Metamodeling
,”
Proceedings of the 40th Conference on Winter Simulation
, Miami, FL, pp.
362
370
.
49.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc., Ser. B (Statistical Methodology)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
50.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.10.1007/s10898-005-2454-3
51.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
52.
Bernardo
,
J. M.
, and
Smith
,
A. F. M.
,
1994
,
Bayesian Theory
,
John Wiley & Sons, Inc.
,
New York
.
53.
Moore
,
R. A.
,
2012
, “
Value-Based Global Optimization
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
54.
Kahn
,
H.
, and
Marshall
,
A. W.
,
1953
, “
Methods of Reducing Sample Size in Monte Carlo Computations
,”
J. Oper. Res. Soc. Am.
,
1
(
5
), pp.
263
271
.
55.
Li
,
P. Y.
, and
Mensing
,
F.
,
2010
, “
Optimization and Control of a Hydro-Mechanical Transmission Based Hybrid Hydraulic Passenger Vehicle
,”
7th International Fluid Power Conference
, Aachen, Germany.
You do not currently have access to this content.