Reconfigurable and multifunctional products are breeds of products that cater to the increased diversification of customer needs. Unlike single-state static products which can perform only one primary function, these products cater to different customer needs by performing more than one function with or without changing their configuration. However, there is a lack of systematic methods to support the conceptual task of combining two existing single-state products into an integrated product that provides multiple functions. In this work, a function based approach is proposed which provides more rigorous support to assess the feasibility of integrating two products. The function structures of the existing products are combined to obtain the overall function structure of the reconfigurable product. Function sharing, based on quantified functional similarity, is proposed and applied to identify functions that can be shared by the same component. The information obtained from the function structure is then mapped to the components of two existing products to analyze their roles in the final reconfigurable product architecture. A case study illustrates the proposed approach by analyzing the integration of a power drill and a dust buster.

References

References
1.
Singh
,
V.
,
Walther
,
B.
,
Krager
,
J.
,
Putnam
,
N.
,
Koraishy
,
B.
,
Wood
,
K. L.
, and
Jensen
,
D.
,
2007
, “
Design for Transformation: Theory, Method and Application
,”
Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference
, Las Vegas, NV, Paper NO. DETC2007-34876.
2.
Terrafugia
,
2011
, http://www.terrafugia.com, accessed February 24
3.
Kalorik Toaster Oven/Coffee Maker/Griddle
,
2010
, http://www.amazon.com/Kalorik-Toaster-Coffee-Maker-Griddle/dp/B002V0R1L8, accessed December 10
4.
Lewis
,
K.
,
2012
, “
Making Sense of Elegant Complexity in Design
,”
ASME J. Mech. Des.
,
134
(
12
), p.
120801
.10.1115/1.4023002
5.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2000
,
Product Design and Development
,
2nd ed.
,
McGraw-Hill
,
New York, NY
.
6.
Dolan
,
B.
, and
Lewis
,
K.
,
2008
, “
Robust Product Family Consolidation and Selection
,”
J. Eng. Design
,
19
(
6
), pp.
553
569
.10.1080/09544820802126511
7.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J.
,
2005
,
Product Platform and Product Family Design: Methods and Applications
,
Springer
,
New York
.
8.
Pine
,
J. B.
,
1992
, “
Mass Customization: The New Frontier in Business Competition
,”
Harvard Business School Press
,
Boston
.
9.
Katz
,
R.
,
2007
, “
Design Principles of Reconfigurable Machines
,”
Int. J. Adv. Manuf. Technol.
,
34
(
2007
), pp.
430
439
.10.1007/s00170-006-0615-2
10.
Schulz
,
A. P.
,
Fricke
,
E.
, and
Igenbergs
,
E.
,
2000
, “
Enabling Changes in Systems Throughout the Entire Life-Cycle —Key to Success?
,”
Proceedings of the 10th Annual INCOSE Conference
, Minneapolis, MN.
11.
Saleh
,
J. H.
,
Mark
,
G.
, and
Jordan
,
N. C.
,
2009
, “
Flexibility: A Multi-Disciplinary Literature Review and a Research Agenda for Designing Flexible Engineering Systems
,”
J. Eng. Design
,
20
(
3
), pp.
307
323
.10.1080/09544820701870813
12.
Ferguson
,
S.
,
Siddiqi
,
A.
,
Lewis
,
K.
, and
De Weck
,
O. L.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference
, Las Vegas, NV, Paper No. DETC2007-35745.
13.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Szmerekovsky
,
A.
, and
Jensen
,
D.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
),
p. 081010
.10.1115/1.3125205
14.
Haldaman
,
J.
, and
Parkinson
,
M.
,
2010
, “
Reconfigurable Products and Their Means of Reconfiguration
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Montreal, Quebec, Canada, Paper No. DETC2010-28528.
15.
Weaver
,
J.
,
Wood
,
K.
,
Crawford
,
R.
, and
Jensen
,
D.
,
2010
, “
Transformation Design Theory: A Meta-Analogical Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
, p.
031012
.10.1115/1.3470028
16.
Skiles
,
S. M.
,
Singh
,
V.
,
Krager
,
J.
,
Seepersad
,
C. C.
,
Wood
,
K.
, and
Jensen
,
D.
,
2006
, “
Adapted Concept Generation and Computational Techniques for the Application of a Transformer Design Theory
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference
, Philadelphia, PA, Paper No. DETC2006-99584.
17.
Weaver
,
J. M.
,
Wood
,
K. L.
and
Jensen
,
D.
,
2008
, “
Transformation Facilitators: A Quantitative Analysis of Reconfigurable Products and Their Characterstics
,”
Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference
, Brooklyn, NY, Paper No. DETC2008-49891.
18.
Weaver
,
J. M.
,
Kuhr
,
R.
,
Wang
,
D.
,
Crawford
,
R. H.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Linsey
,
J. S.
,
2009
, “
Increasing Innovation in Multi-Function Systems: Evaluation and Experimentation of Two Ideation Methods for Design
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, San Diego, CA, Paper No. DETC2009-86256
19.
Kuhr
,
R.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Crawford
,
R.
,
2010
, “
Concept Opportunity Diagrams: A Visual Modeling Method to Find Multifunctional Design Concepts
,”
Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference
, Montreal, Quebec, Paper No. DETC2010-29068.
20.
Ferguson
,
S.
, and
Lewis
,
K.
,
2006
, “
Effective Development of Reconfigurable Systems Using Linear State-Feedback Control
,”
AIAA J.
,
44
(
4
), pp.
868
878
.10.2514/1.17147
21.
Olewnik
,
A.
, and
Lewis
,
K.
,
2006
, “
A Decision Support Framework for Flexible System Design
,”
J. Eng. Design
,
17
(
1
), pp.
75
97
.10.1080/09544820500274019
22.
Siddiqi
,
A.
, and
De Weck
,
O. L.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
(
10
),
p. 101102
.10.1115/1.2965598
23.
Siddiqi
,
A.
,
De Weck
,
O. L.
, and
Iagnemma
,
K.
,
2006
, “
Reconfigurability in Planetary Surface Vehicles: Modeling Approaches and Case Study
,”
J. Br. Interplanet. Soc.
,
59
(
12
), pp.
450
460
.
24.
Khire
,
R. A.
, and
Messac
,
A.
,
2008
, “
Selection-Integrated Optimization (SIO) Methodology for Optimal Design of Adaptive Systems
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101401
.10.1115/1.2965365
25.
Lewis
,
P. K.
,
Mattson
,
C. A.
, and
Murray
,
V. R.
,
2011
, “
A Design Optimization Strategy for Creating Devices That Traverse the Pareto Frontier Over Time
,”
Struct. Multidiscip. Optim.
,
43
, pp.
191
204
.10.1007/s00158-010-0555-1
26.
Ulrich
,
K.
,
1993
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
1995
), pp.
419
440
.10.1016/0048-7333(94)00775-3
27.
Deng
,
Y. M.
,
Britton
,
G. A.
, and
Tor
,
S. B.
,
1998
, “
A Design Perspective of Mechanical Function and Its Object-Oriented Representation Scheme
,”
Eng. Comput.
,
14
(
4
), pp.
309
320
.10.1007/BF01201762
28.
Otto
,
K.
, and
Wood
,
K.
,
2000
,
Product Design: Techniques in Reverse Engineering And New Product Development
,
Prentice-Hall
,
Upper Saddle River
,
NJ.
29.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
30.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configuration From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.10.1080/09544820701546165
31.
Bryant
,
C. R.
,
McAdams
,
D. A.
,
Stone
,
R. B.
,
Kurtoglu
,
T.
, and
Campell
,
M. I.
,
2005
, “
A Computational Technique for Concept Generation
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Long Beach, CA, Paper No. DETC2005-85323.
32.
Kurtoglu
,
T.
,
Campbell
,
M. I.
,
Arnold
,
C. B.
,
Stone
,
R.
, and
McAdams
,
D. A.
,
2009
, “
A Component Taxonomy as a Framework for Computational Design Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
1
), p.
011007
.10.1115/1.3086032
33.
Bohm
,
M. R.
, and
Stone
,
R. B.
,
2010
, “
Form Follows Form—Fine Tuning Artificial Intelligence Methods
,”
Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Montreal, Quebec, Canada, Paper No. DETC2010-28774.
34.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architecture
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.10.1016/S0142-694X(99)00003-4
35.
Zamirowski
,
E. J.
, and
Otto
,
K. N.
,
1999
, “
Identifying Product Portfolio Architecture Modularity Using Function and Variety Heuristics
,”
Proceedings of the 11th International Conference on Design Theory and Methodology ASME Design Engineering Technical Conferences
, Las Vegas, NV, Paper No. DETC99/DTM-8790.
36.
Umeda
,
Y.
,
Yoshikawa
,
H.
, and
Tomiyama
,
T.
,
1999
, “
A Design Methodology for Self-Maintenance Machines
,”
Comput-aided Maint.
,
5
, pp.
117
135
.10.1007/978-1-4615-5305-2_6
37.
Steward
,
D.
,
1981
, “
The Design Structure Matrix: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
,
EM-28(3)
,
pp.
71
74
.
38.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
305
.10.1109/17.946528
39.
Vucovich
,
J.
,
Bhardwaj
,
N.
,
Hoi-Hei
,
H.
,
Ramakrishna
,
M.
,
Thakur
,
M.
, and
Stone
,
R.
,
2006
, “
Concept Generation Algorithms for Repository-Based Early Design
,”
Proceedings of the ASME International Design Engineering Technical Conference & Computers and Information in Engineering Conference
, Philadelphia, PA, Paper No. DETC2006-99466.
40.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-By-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
174
182
.10.1115/1.1475317
41.
Ulrich
,
K.
, and
Seering
,
W. P.
,
1990
, “
Function Sharing in Mechanical Design
,”
Des. Stud.
,
11
(
4
), pp.
223
234
.10.1016/0142-694X(90)90041-A
42.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R.
,
2000
, ‘‘
A Heuristic Method for Identifying Modules for Product Architectures
,’’
Des. Stud.
,
21
(
1
), pp.
5
31
.10.1016/S0142-694X(99)00003-4
43.
Jose
,
A.
, and
Tollenaere
,
M.
,
2005
, “
Modular and Platform Methods for Product Family Design: Literature Analysis
,”
J. Intell. Manuf.
,
16
, pp.
371
390
.10.1007/s10845-005-7030-7
44.
Schmidt
,
L. C.
, and
Cagan
,
J.
,
1997
, “
GGREADA: A Graph Grammar-Based Machine Design Algorithm
,”
Res. Eng. Des.
,
9
(
4
), pp.
195
213
.10.1007/BF01589682
45.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
New York
.
46.
Yu
,
T. L.
,
Yassine
,
A.
, and
Goldberg
,
D. E.
,
2003
, “
A Genetic Algorithm for Developing Modular Product Archtectures
,”
Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, IL, Paper No. DETC2003/DTM-48657.
47.
Kalyanasundaram
,
V.
,
2012
, “
Function Based Heuristics to Develop Reconfigurable and Multifunctional Products
,” M.S. thesis, University at Buffalo - SUNY.
48.
Design Repository
,
2011
, Design Engineering Laboratory, http://designengineeringlab.org/delabsite/repository.html, accessed January 10
49.
Altshuller
G. S.
,
1984
,
Creativity as an Exact Science: The Theory of the Solution of Inventive Problems
,
Gordon and Breach
,
New York
.
You do not currently have access to this content.