The flexure hinges are the most vulnerable parts in a flexure-based mechanism due to their smaller dimensions and stress concentration characteristics, therefore evaluating the maximum stresses generated in them is crucial for assessing the workspace and the fatigue life of the mechanism. Stress concentration factors characterize the stress concentrations in flexure hinges, providing an analytical and efficient way to evaluate the maximum stress. In this work, by using the ratio of the radius of curvature of the stress-concentrating feature to the minimum thickness as the only fitting variable, generalized equations for both the bending and tension stress concentration factors were obtained for two generalized models, the conic model and the elliptic-arc-fillet model, through fitting the finite element results. The equations are applicable to commonly used flexure hinges including circular, elliptic, parabolic, hyperbolic, and various corner-fillet flexure hinges, with acceptable errors. The empirical equations are tractable and easy to be employed in the design and optimization of flexure-based mechanisms. The case studies of the bridge-type displacement amplifiers demonstrated the effectiveness of the generalized equations for predicting the maximum stresses in flexure-based mechanisms.

References

References
1.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME, J. Mech. Des.
,
127
(
7
), pp.
788
798
.10.1115/1.1900149
2.
Xu
,
W.
, and
King
,
T.
,
1996
, “
Flexure Hinges for Piezoactuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Considerations
,”
Precis Eng.
,
19
, pp.
4
10
.10.1016/0141-6359(95)00056-9
3.
Shi
,
H.
, and
Su
,
H.
,
2013
, “
An Analytical Model for Calculating the Workspace of a Flexure Hexapod Nanopositioner
,”
ASME J. Mech. Robot.
5
(4), p. 041009.
4.
Dirksen
,
F.
,
Anselmann
,
M.
,
Zohdi
,
T. I.
, and
Lammering
,
R.
,
2013
, “
Incorporation of Flexural Hinge Fatigue-Life Cycle Criteria into the Topological Design of Compliant Small-Scale Devices
,”
Precis. Eng.
,
37
(
3
), pp.
531
541
.10.1016/j.precisioneng.2012.12.005
5.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
6.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
1997
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.10.1063/1.1147635
7.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(
9
), pp.
346
352
.10.1115/1.1372190
8.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
O'Malley
,
E.
, and
Samuelson
,
M.
,
2002
, “
Parabolic and Hyperbolic Flexure Hinges: Flexibility, Motion Precision and Stress Haracterization Based on Compliance Closed-Form Equations
,”
Precis Eng.
,
26
(
2
), pp.
183
192
.10.1016/S0141-6359(01)00108-8
9.
Chen
,
G.
,
Shao
,
X.
, and
Huang
,
X.
,
2008
, “
A New Generalized Model for Elliptical Arc Flexure Hinges
,”
Rev. Sci. Instrum.
,
79
(
9
),
p. 095103
.10.1063/1.2976756
10.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Closed-Form Compliance Equations of Filleted V-Shaped Flexure Hinges for Compliant Mechanism Design
,”
Precis. Eng.
,
34
(
3
), pp.
408
418
.10.1016/j.precisioneng.2009.10.002
11.
Li
,
Q.
,
Pan
,
C.
, and
Xu
,
X.
,
2013
, “
Closed-Form Compliance Equations for Power-Function-Shaped Flexure Hinge Based on Unit-Load Method
,”
Precis Eng.
,
37
(
1
), pp.
135
145
.10.1016/j.precisioneng.2012.07.010
12.
Lobontiu
,
N.
,
Cullin
,
M.
,
Petersen
,
T.
,
Alcazar
,
J. A.
, and
Noveanu
,
S.
,
2013
, “
Planar Compliances of Symmetric Notch Flexure Hinges: The Right Circularly Corner-Filleted Parabolic Design
,”
IEEE Trans. Autom. Sci. Eng.
(to be published).
13.
Shea
,
R.
,
1964
, “
Dynamic Stress-concentration Factors
,”
Exp. Mech.
,
4
(
1
), pp.
20
24
.10.1007/BF02321247
14.
Chen
,
G.
,
Liu
,
X.
,
Gao
,
H.
, and
Jia
,
J.
,
2009
, “
A Generalized Model for Conic Flexure Hinges
,”
Rev. Sci. Instrum.
,
80
(
5
),
p. 055106
.10.1063/1.3137074
15.
Chen
,
G.
,
Liu
,
X.
, and
Du
,
Y.
,
2011
, “
Elliptical-Arc-Fillet Flexure Hinges: Towards a Generalized Model Noordhoff International Publishing, Leyden, Netherlands for Most Commonly Used Flexure Hinge
,”
ASME J. Mech. Des.
,
133
(
8
),
p. 081002
.10.1115/1.4004441
16.
Nisitani
,
H.
,
1978
,
Solutions of Notch Problems by Body Force Method
,
G. C.
Sih
ed., Noordhoff International Publishing, Leyden, Netherlands.
17.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
7th ed.
,
McGraw-Hill
,
New York
.
18.
Pilkey
,
W. D.
, and
Pilkey
,
D. F.
,
2008
,
Peerson's Stress Concentration Factors
,
3rd ed.
,
John Wiley & Sons
,
New York
.
19.
Smith
,
S. T.
,
Chetwynd
,
D. G.
, and
Bowen
,
D. K.
,
1987
, “
Design and Assessment of Monolithic High-Precision Translation Mechanisms
,”
J. Phys. E
,
20
, pp.
977
983
.10.1088/0022-3735/20/8/005
20.
Ling
,
C. B.
,
1952
, “
On the Stresses in a Notched Strip
,”
ASME Trans., J. Appl. Mech.
,
19
, pp.
141
146
.
21.
Ling
,
C. B.
,
1968
, “
On Stress Concentration Factor in a Notched Strip
,”
ASME J. Appl. Mech.
,
35
, pp.
833
835
.10.1115/1.3601322
22.
Yang
,
R.
,
Jouaneh
,
M.
, and
Schweizer
,
R.
,
1996
, “
Design and Characterization of a Low-Profile Micropositioning Stage
,”
Precis. Eng.
,
18
, pp.
20
29
.10.1016/0141-6359(95)00032-1
23.
Durelli
,
A. J.
,
1982
,
Stress Concentrations
, Office of Naval Research, Washington, D.C., U.M. Project No. SF-CARS,
School of Engineering, University of Maryland
, College Park, MD.
24.
Hale
,
L. C.
,
1999
, “
Principles and Techniques for Designing Precision Machines (Chapter 6)
,” Ph.D. thesis,
Massachusetts Institute of Technology
. Also available as UCRL-LR-133066.
25.
Ashby
,
M. F.
,
Shercliff
,
H.
, and
Cebon
,
D.
,
2007
,
Materials: Engineering, Science, Processing and Design
,
Butterworth-Heinemann
.
26.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1958
,
Strength of Materials
,
Van Nostrand
,
New York
.
You do not currently have access to this content.