The Bayesian metric was used to select the best available response surface in the literature. One of the major drawbacks of this method is the lack of a rigorous method to quantify data uncertainty, which is required as an input. In addition, the accuracy of any response surface is inherently unpredictable. This paper employs the Gaussian process based model bias correction method to quantify the data uncertainty and subsequently improve the accuracy of a response surface model. An adaptive response surface updating algorithm is then proposed for a large-scale problem to select the best response surface. The proposed methodology is demonstrated by a mathematical example and then applied to a vehicle design problem.

References

References
1.
Oberkampf
,
W. L.
,
Diegert
,
K. V.
,
Alvin
,
K. F.
, and
Rutherford
,
B. M.
,
1998
, “
Variability, Uncertainty, and Error in Computational Simulation
,”
ASME Proceedings of the 7th AIAA/ASME Joint thermophysics and heat transfer conference
, ASME-HTD-Vol.357-2.
2.
Apley
,
D.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.10.1115/1.2204974
3.
Zhan
,
Z.
,
Fu
,
Y.
,
Yang
,
R. J.
, and
Peng
,
Y. H.
,
2012
, “
Bayesian Based Multivariate Model Validation Method Under Uncertainty for Dynamic Systems
,”
ASME J. Mech. Des.
,
134
(3), p.
0345022
.10.1115/1.4005863
4.
Kim
,
C.
, and
Choi
,
K. K.
,
2008
, "
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121401
.10.1115/1.2988476
5.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
,
2005
, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
ASME J. Mech. Des
,
127
(
5
), pp.
1014
1020
.10.1115/1.1906264
6.
Gu
,
L.
,
2001
, “
A comparison of Polynomial Based Regression Models in Vehicle Safety Analysis
,”
ASME Design Engineering Technical Conferences
, ASME Paper No.: DETC/DAC-21083.
7.
Kurtaran
,
H.
,
Eskandarian
,
A.
,
Marzougui
,
D.
, and
Bedewi
,
N. E.
,
2002
, “
Crashworthiness Design Optimization Using Successive Response Surface Approximations
,”
Comput. Mech.
29
(
4–5
), pp.
409
421
.10.1007/s00466-002-0351-x
8.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M. F.
,
2005
, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
83
(
25–26
), pp.
2121
2136
.10.1016/j.compstruc.2005.02.025
9.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
, pp.
439
457
.10.1007/s00158-008-0338-0
10.
Shi
,
L.
,
Yang
,
R. J.
, and
Zhu
,
P.
,
2012
, “
A Method for Selecting Surrogate Models in Crashworthiness Optimization
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
159
170
.10.1007/s00158-012-0760-1
11.
Xiong
,
Y.
,
Chen
,
W.
,
Tsui
,
K.
, and
Apley
,
D. W.
,
2009
, “
A Better Understanding of Model Updating Strategies in Validating Engineering Models
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
1327
1337
.10.1016/j.cma.2008.11.023
12.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
13.
Wang
,
S. C.
,
Chen
,
W.
, and
Tsui
,
K. L.
,
2009
, “
Bayesian Validation of Computer Models
,”
Technometrics
,
51
(
4
), pp.
439
451
.10.1198/TECH.2009.07011
14.
Arendt
,
P.
,
Apley
,
D.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.10.1115/1.4007390
15.
Gearhart
,
C.
, and
Wang
,
B. P.
,
2001
, “
Bayesian Metrics for Comparing Response Surface Models of Data With Uncertainty
,”
Struct. Multidiscip. Optim.
,
22
, pp.
198
207
.10.1007/s001580100137
16.
Sivia
,
D. S.
, and
Skilling
,
J.
,
2006
,
Data Analysis: A Bayesian Tutorial
,
2nd ed.
,
Oxford University Press
,
New York.
17.
Park
,
J.
, and
Jeon
,
J.
,
2002
, “
Estimation of Input Parameters in Complex Simulation Using a Gaussian Process Metamodel
,”
Probab. Eng. Mech.
,
17
, pp.
219
225
.10.1016/S0266-8920(02)00006-1
18.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
19.
Shi
,
L.
,
Yang
,
R. J.
, and
Zhu
,
P.
,
2012
, “
An Adaptive Response Surface Method for Crashworthiness Optimization
,”
Eng. Optim.
,
2012
, p.
734815
.10.1080/0305215X.2012.734815
20.
National Crash Analysis Center (NCAC)
,
2001
, "Public Finite Element Model Archive.” Available at: http://www.ncac.gwu.edu/archives/model/index.html
You do not currently have access to this content.