Design optimization in market system research commonly relies on Discrete choice analysis (DCA) to forecast sales and revenues for different product variants. Conventional DCA, which represents consumer choice as a compensatory process through maximization of a smooth utility function, has proven to be reasonably accurate at predicting choice and interfaces easily with engineering models. However, the marketing literature has documented significant improvement in modeling choice with the use of models that incorporate both noncompensatory (descriptive) and compensatory (predictive) components. This noncompensatory component can, for example, model a “consider-then-choose” process in which potential customers first narrow their decisions to a small set of products using noncompensatory screening rules and then employ a compensatory evaluation to select from within this consideration set. This article presents solutions to a design optimization challenge that arises when demand is modeled with a consider-then-choose model: the choice probabilities are no longer continuous or continuously differentiable. We examine two different classes of methods to solve optimal design problems–genetic algorithms (GAs) and nonlinear programming (NLP) relaxations based on complementarity constraints–for consider-then-choose models whose screening rules are based on conjunctive (logical “and”) rules.

References

References
1.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(4), pp.
653
658
.10.1115/1.2829328
2.
Cooper
,
A. B.
,
Georgiopolous
,
P.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
,
2006
, “
Analytical Target Cascading: An Enterprise Context in Optimal Product Design
,”
ASME J. Mech. Des.
,
128
(1), pp.
4
13
.10.1115/1.2125972
3.
Collopy
,
P. D.
,
2001
, “
Economic-Based Distributed Optimal Design
,” Tech. Rep. 2001-4675, American Institute of Aeronautics and Astronautics.
4.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
,
125
(3), pp.
490
497
.10.1115/1.1587156
5.
McFadden
,
D. L.
,
1981
, “
Econometric Models of Probabilistic Choice
,”
Structural Analysis of Discrete Data and Econometric Applications
,
C. F.
Manski
and
D. L.
McFadden
, eds.
MIT Press
, Cambridge, MA, pp.
199
272
.
6.
Louvierre
,
J. J.
,
Hensher
,
D. A.
, and
Swait
,
J. D.
,
2000
,
Stated Choice Methods: Analysis and Applications
,
Cambridge University Press
, New York.
7.
Train
,
K.
,
2009
,
Discrete Choice Methods With Simulation
,
2nd ed.
,
Cambridge University Press
, New York.
8.
Michalek
,
J. J.
,
Papalambros
,
P. Y.
, and
Skerlos
,
S. J.
,
2004
, “
A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1062
1070
.10.1115/1.1804195
9.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
,
2005
, “
Enhancing Discrete Choice Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
, pp.
514
523
.10.1115/1.1897408
10.
Wassenaar
,
H. J.
,
Deepak
,
K.
, and
Chen
,
W.
,
2006
, “
Discrete Choice Demand Modeling for Decision-Based Design
,”
Decision Making in Engineering Design
,
K.
Lewis
,
W.
Chen
, and
L.
Schmidt
, eds.,
ASME Press
, New York, pp.
86
108
.
11.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
, and
Wang
,
N.
,
2009
, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
131
(
8
), p.
071008
.10.1115/1.3149845
12.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2009
, “
Optima Product Design Under Price Competition
,”
ASME J. Mech. Des.
,
131
(7), p.
071003
.10.1115/1.3125886
13.
Shiau
,
C.-S. N.
, and
Michalek
,
J. J.
,
2008
, “
Should Designers Worry About Market Systems?
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Volume 1: 34th Design Automation Conference
, Parts A and B Brooklyn, New York, August 3–6, 2008,
131
, pp.
377
391
.10.1115/DETC2008-49137
14.
Kumar
,
D.
,
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
,
Gomex-Levi
,
G.
, and
Koppelman
,
F.
,
2009
, “
A Hierarchical Choice Modeling Approach for Incorporating Customer Preferences in Vehicle Package Design
,”
Int. J. Prod. Dev.
,
8
(
3
), pp.
228
251
.10.1504/IJPD.2009.024199
15.
MacDonald
,
E.
,
Whitefoot
,
K.
,
Allison
,
J.
,
Papalambros
,
P. Y.
, and
Gonzalez
,
R.
,
2010
, “
An Investigation of Sustainability, Preference, and Profitability in Design Optimization
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences
.
16.
Frischknecht
,
B. D.
,
Whitefoot
,
K.
, and
Papalambros
,
P. Y.
,
2010
, “
On the Suitability of Econometric Demand Models in Design for Market Systems
,”
ASME J. Mech. Des.
,
132
(12), p.
121007
.10.1115/1.4002941
17.
Ferguson
,
S.
,
Olewnik
,
A.
,
Maleganokar
,
P.
,
Cormier
,
P.
, and
Kansara
,
S.
,
2010
, “
Mass Customization: A Review of the Paradigm Across Marketing, Engineering, and Distribution Domains
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences
, Volume 1: 36th Design Automation Conference, Parts A and B Montreal, Quebec, Canada, August 15–18, 2010, pp.
133
150
.
18.
Hauser
,
J. R.
, “
Consideration Set Heuristics
,”
J. Bus. Res.
(to be published).
19.
Gigerenzer
,
G.
, and
Gaissmaier
,
W.
,
2011
, “
Heuristic Decision Making
,”
Annu. Rev. Psychol.
,
62
, pp.
451
82
.10.1146/annurev-psych-120709-145346
20.
Hauser
,
J. R.
, and
Wernerfelt
,
B.
,
1990
, “
An Evaluation Cost Model of Consideration Sets
,”
J. Consum. Res.
16
,
p. 393
408
.10.1086/209225
21.
Hauser
,
J. R.
,
1978
, “
Testing the Accuracy, Usefulness and Significance of Probabilistic Models: An Information-Theoretic Approach
,”
Oper. Res.
,
26
(
3
), pp.
406
421
.10.1287/opre.26.3.406
22.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer-Verlag
, New York, NY.
23.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.10.1137/S0036144504446096
24.
Waltz
,
R. A.
,
Morales
,
J. L.
,
Nocedal
,
J.
, and
Orban
,
D.
,
2006
, “
An Interior Algorithm For Nonlinear Optimization that Combines Line Search and Trust Region Steps
,”
Math. Program. Ser. A
,
107
(
3
), pp.
391
408
.10.1007/s10107-004-0560-5
25.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
,
2000
,
Trust Region Methods
,
SIAM
, Philadelphia, PA.
26.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
27.
Baumrucker
,
B.
,
Renfro
,
J.
, and
Biegler
,
L.
,
2008
, “
Mpec Problem Formulations and Solution Strategies With Chemical Engineering Applications
,”
Comput. Chem. Eng.
,
32
, pp.
2903
2913
.10.1016/j.compchemeng.2008.02.010
28.
Baumrucker
,
B.
, and
Biegler
,
L.
,
2009
, “
Mpec Strategies for Optimization of a Class of Hybrid Dynamic Systems
,”
J. Process Control
,
19
, pp.
1248
1256
.10.1016/j.jprocont.2009.02.006
29.
Baumrucker
,
B.
, and
Biegler
,
L.
,
2010
, “
Mpec Strategies for Cost Optimization of Pipeline Operations
,”
Comput. Chem. Eng.
,
34
, pp.
900
913
.10.1016/j.compchemeng.2009.07.012
30.
Besharati
,
B.
,
Azarm
,
S.
, and
Kannan
,
P. K.
,
2006
, “
A Decision Support System for Product Design Selection: A Generalized Purchase Modeling Approach
,”
Decision Support Sys.
,
42
, pp.
333
350
.10.1016/j.dss.2005.01.002
31.
Simon
,
H. A.
,
1957
,
Models of Man
,
Wiley
,
New York
.
32.
Coombs
,
C. H.
,
1964
,
A Theory of Data
,
Wiley
,
New York
.
33.
Dawes
,
R. M.
,
1964
, “
Social Selection Based on Multidimensional Criteria
,”
J. Abnorm. Soc. Psychol.
,
68
, pp.
104
109
.10.1037/h0047832
34.
Einhorn
,
H. J.
,
1970
, “
The Use of Nonlinear, Noncompensatory Models in Decision Making
,”
Psychol. Bull.
,
73
, pp.
211
230
.10.1037/h0028695
35.
Tversky
,
A.
,
1972
, “
Elimination by Aspects: A Theory of Choice
,”
Psychol. Rev.
,
79
(
4
), pp.
281
299
.10.1037/h0032955
36.
Simon
,
H. A.
,
1986
, “
Rationality in Psychology and Economics
,”
J. Bus.
,
59
(
4
), pp.
S209
S224
.10.1086/296363
37.
Payne
,
J. W.
,
1976
, “
Task Complexity and Contingent Processing in Decision Making: An Information Search
,”
Organ Behav. Hum. Perform.
,
16
, pp.
366
387
.10.1016/0030-5073(76)90022-2
38.
Hauser
,
J. R.
, “
A Marketing Science Perspective on Recognition-Based Heuristics (and the fast and frugal paradigm)
,” Soc. for Judgment Decis Making,
6
(5), pp.
396
408
.
39.
Gilbride
,
T. J.
, and
Allenby
,
G. M.
,
2004
, “
A Choice Model With Conjuctive, Disjunctive, and Compensatory Screening Rules
,”
Mark. Sci.
,
23
(
3
), pp.
391
406
.10.1287/mksc.1030.0032
40.
Jedidi
,
K.
,
Kohli
,
R.
, and
DeSarbo
,
W. S.
,
2005
, “
Probabilistic Subset-Conjunctive Models for Heterogeneous Consumers
,”
J. Mark. Res.
,
42
, pp.
483
494
.10.1509/jmkr.2005.42.4.483
41.
Kohli
,
R.
, and
Jedidi
,
K.
,
2007
, “
Representation and Inference of Lexicographic Preference Models and Their Variants
,”
Mark. Sci.
,
26
, pp.
380
399
.10.1287/mksc.1060.0241
42.
Hauser
,
J.
,
Ding
,
M.
, and
Gaskin
,
S. P.
,
2009
, “
Non-Compensatory (and Compensatory) Models of Consideration-Set Decisions
,”
2009 Sawtooth Software Conference Proceedings
, Sequin WA.
43.
Hauser
,
J. R.
,
Toubia
,
O.
,
Evgeniou
,
T.
,
Befurt
,
R.
, and
Dzyabura
,
D.
,
2010
, “
Disjunctions of Conjunctions, Cognitive Simplicty, and Consideration Sets
,”
J. Mark. Res.
,
XLVII
, pp.
485
496
.10.1509/jmkr.47.3.485
44.
Dzyabura
,
D.
, and
Hauser
,
J. R.
,
2011
, “
Active Machine Learning for Consideration Heuristics
,”
Mark. Sci.
,
30
(
5
), pp.
801
819
.10.1287/mksc.1110.0660
45.
Liu
,
Q.
, and
Arora
,
N.
,
2011
, “
Efficient Choice Designs for a Consider-Then-Choose Model
,”
Mark. Sci.
,
30
(
2
), pp.
321
338
.10.1287/mksc.1100.0629
46.
Ding
,
M.
,
Hauser
,
J. R.
,
Dong
,
S.
,
Dzyabura
,
D.
,
Yang
,
Z.
,
Su
,
C.
, and
Gaskin
,
S. P.
,
2011
, “
Unstructured Direct Elicitation of Decision Rules
,”
J. Mark. Res.
,
XLVIII
, pp.
116
127
.10.1509/jmkr.48.1.116
47.
Yee
,
M.
,
Dahan
,
E.
,
Hauser
,
J. R.
, and
Orlin
,
J.
,
2007
, “
Greedoid-Based Noncompensatory Inference
,”
Mark. Sci.
,
26
(
4
), pp.
532
549
.10.1287/mksc.1060.0213
48.
Swait
,
J. D.
,
2001
, “
A Non-Compensatory Choice Model Incorporating Attribute Cutoffs
,”
Transp. Res., Part B: Methodol.
,
35
, pp.
903
928
.10.1016/S0191-2615(00)00030-8
49.
Whitefoot
,
K.
,
Fowlie
,
M.
, and
Skerlos
,
S. J.
,
2013
, “
Compliance by Design: Industry Response to Efficiency Standards
,” Tech. Rep. (http://nature.berkeley.edu/
fowlie/papers.html
), University of California Berkeley.
50.
Whitefoot
,
K. S.
, and
Skerlos
,
S. J.
,
2012
, “
Design Incentives to Increase Vehicle Size Created from the U.S. Footprint-Based Fuel Economy Standards
,”
Energy Policy
,
41
(
1
), pp.
402
411
.10.1016/j.enpol.2011.10.062
51.
Edmunds.com. Edmunds True-Cost-to-Own Calculator (http://www.edmunds.com/tco.html).
52.
Edmunds.com. Edmunds Auto Calculators (http://www.edmunds.com/calculators/).
53.
U.S. Environmental Protection Agency. New Window Sticker (http://www. fueleconomy.gov/feg/label/).
54.
Morrow
,
W. R.
,
Long
,
M.
, and
MacDonald
,
E. F.
,
2012
, “
Consider-Then-Choose Models in Decision-Based Design Optimization
,”
Proceedings of ASME IDETC 2012, Volume 3: 38th Design Automation Conference
, Parts A and B 405, August 12, 2012, pp.
405
422
.10.1115/DETC2012-71176
55.
Zang
,
I.
,
1981
, “
Discontinuous Optimization by Smoothing
,”
Math. Oper. Res.
,
6
(
1
), pp.
140
152
.10.1287/moor.6.1.140
56.
Coello Coello
,
C. A.
,
2002
, “
Theoretical and Numerical Constraint-Handling Techniques Used With Evolutionary Algorithms: A Survey of the State of the Art
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
11–12
), pp.
1245
1287
.10.1016/S0045-7825(01)00323-1
57.
Yeniay
,
O.
,
2005
, “
Penalty Function Methods for Constrained Optimization With Genetic Algorithms
,”
Math. Comput. Appl.
,
10
, pp.
45
56
.
58.
Richardson
,
J. T.
,
Palmer
,
M. R.
,
Liepins
,
G.
, and
Hilliard
,
M.
,
1989
, “
Some Guidelines For Genetic Algorithms With Penalty Functions
,”
Proceedings of the Third International Conference on Genetic Algorithms
, J. D. Schaffer, ed.
59.
Deb
,
K.
,
2000
, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
, pp.
311
338
.10.1016/S0045-7825(99)00389-8
60.
Dirkse
,
S. P.
, and
Ferris
,
M. C.
,
1995
, “
The PATH Solver: A Non-Monotone Stabilization Scheme for Mixed Complementarity Problems
,”
Optim. Methods Software
,
5
, pp.
123
156
.10.1080/10556789508805606
61.
Dirkse
,
S. P.
, and
Ferris
,
M. C.
,
1996
, “
A Pathsearch Damped Newton Method for Computing General Equilibria
,”
Ann. Operat. Res.
,
68
, pp.
211
232
.10.1007/BF02209613
62.
Ferris
,
M. C.
, and
Pang
,
J. S.
,
1997
, “
Engineering and Economic Applications of Complementarity Problems
,”
SIAM Rev.
,
39
, pp.
669
713
.10.1137/S0036144595285963
63.
Ferris
,
M. C.
,
Kanzow
,
C.
, and
Munson
,
T. S.
,
1999
, “
Feasible Descent Algorithms for Mized Complementarity Problems
,”
Math. Program.
,
86
, pp.
475
497
.10.1007/s101070050101
64.
Munson
,
T.
,
2000
, “
Algorithms and Environments for Complementarity
,” Ph.D. thesis, University of Wisconsin-Madison.
65.
Ralph
,
D.
,
2008
, “
Mathematical Programs With Complementarity Constraints in Traffic and Telecommunications Networks
,”
Philos. Trans. R. Soc. London
,
366
(
1872
), pp.
1973
1987
.10.1098/rsta.2008.0026
66.
Fletcher
,
R.
, and
Leyffer
,
S.
,
2004
, “
Solving Mathematical Programs With Complementarity Constraints as Nonlinear Programs
,”
Optim. Methods Software
,
19
, pp.
15
40
.10.1080/10556780410001654241
67.
Leyffer
,
S.
,
Lopez-Calva
,
G.
, and
Nocedal
,
J.
,
2006
, “
Interior Methods for Mathematical Programs With Complementarity Constraints
,”
SIAM J. Control Optim.
,
17
(
1
), pp.
52
77
.
68.
Fletcher
,
R.
,
Leyffer
,
S.
,
Ralph
,
D.
, and
Scholtes
,
S.
,
2006
, “
Local Convergence of SQP Methods for Mathematical Programs With Equilibrium Constraints
,”
SIAM J. Control Optim.
,
17
(
1
), pp.
259
286
.
69.
U.S. Department of Labor
,
Bureau of Labor Statistics
,
2006
, Current Popoulation Survey (http://www.bls.gov/cps/).
70.
U.S. Department of Transportation
, Federal Highway Administation. 2009 National Household Transportation Survey (http://nhts.ornl.giv).
71.
U.S. Department of Labor
,
Bureau of Labor Statistics
,
2006
, Consumer Expenditure Survey (http://www.bls.gov/cex/).
72.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
73.
Izmailov
,
A. F.
,
Solodov
,
M.
V
.
, and
Uskov
,
E. I.
,
2012
, “
Global Convergence of Augmented Lagrangian Methods Applied to Optimization Problems with Degenerate Constraints, Including Problems With Complementarity Constraints
,”
SIAM J. Control Optim.
,
22
(
4
), pp.
1579
1606
.
74.
Belotti
,
P.
,
Kirches
,
C.
,
Leyffer
,
S.
,
Linderoth
,
J.
,
Luedtke
,
J.
, and
Mahajan
,
A.
,
2013
, “
Mixed-Integer Nonlinear Optimization
,”
Acta Numerica
,
22
, pp.
1
131
.10.1017/S0962492913000032
You do not currently have access to this content.