In complex systems design, multidisciplinary constraints are imposed by stakeholders. Engineers need to search feasible design space for a given problem before searching for the optimum design solution. Searching feasible design space can be modeled as a constraint satisfaction problem (CSP). By introducing logical quantifiers, CSP is extended to quantified constraint satisfaction problem (QCSP) so that more semantics and design intent can be captured. This paper presents a new approach to formulate searching design problems as QCSPs in a continuous design space based on generalized interval, and to numerically solve them for feasible solution sets, where the lower and upper bounds of design variables are specified. The approach includes two major components. One is a semantic analysis which evaluates the logic relationship of variables in generalized interval constraints based on Kaucher arithmetic, and the other is a branch-and-prune algorithm that takes advantage of the logic interpretation. The new approach is generic and can be applied to the case when variables occur multiple times, which is not available in other QCSP solving methods. A hybrid stratified Monte Carlo method that combines interval arithmetic with Monte Carlo sampling is also developed to verify the correctness of the QCSP solution sets obtained by the branch-and-prune algorithm.

References

References
1.
Eastman
,
C. M.
,
1973
, “
Automated Space Planning
,”
Artif. Intell.
,
4
(
1
), pp.
41
64
.10.1016/0004-3702(73)90008-8
2.
Medjdoub
,
B.
, and
Yannou
,
B.
,
2000
, “
Separating Topology and Geometry in Space Planning
,”
Comput.-Aided Des.
,
32
(
1
), pp.
39
61
.10.1016/S0010-4485(99)00084-6
3.
Dohmen
,
M.
,
1995
, “
A Survey of Constraint Satisfaction Techniques for Geometric Modeling
,”
Comput. Graphics
,
19
(
6
), pp.
831
845
.10.1016/0097-8493(95)00055-0
4.
Yannou
,
B.
,
Moreno
,
F.
,
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2005
, “
Faster Generation of Feasible Design Points
,”
Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2005)
, pp.
355
363
.
5.
Titus
,
N.
, and
Ramani
,
K.
,
2005
, “
Design Space Exploration Using Constraint Satisfaction
,”
Papers From the Configuration Workshop at the 19th International Joint Conference on Artificial Intelligence (IJCAI'05)
, pp.
31
36
.
6.
Sébastian
,
P.
,
Chenouard
,
R.
,
Nadeau
,
J. P.
, and
Fischer
,
X.
,
2007
, “
The Embodiment Design Constraint Satisfaction Problem of the BOOTSTRAP Facing Interval Analysis and Genetic Algorithm Based Decision Support Tools
,”
Int. J. Interact. Des. Manuf.
,
1
, pp.
99
106
.10.1007/s12008-007-0014-4
7.
Panchal
,
J. H.
,
Gero Fernández
,
M.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2007
, “
An Interval-Based Constraint Satisfaction (IBCS) Method for Decentralized, Collaborative Multifunctional Design
,”
Concurr. Eng. Res. Appl.
,
15
(
3
), pp.
309
323
.10.1177/1063293X07083083
8.
Yvars
,
P. A.
,
2009
, “
A CSP Approach for the Network of Product Lifecycle Constraints Consistency in a Collaborative Design Context
,”
Eng. Applic. Artif. Intell.
,
22
(
6
), pp.
961
970
.10.1016/j.engappai.2008.11.006
9.
Lottaz
,
C.
,
Sam-Haroud
,
D.
,
Faltings
,
B.
, and
Smith
,
I.
,
1998
, “
Constraint Techniques for Collaborative Design
,”
Proceedings of IEEE International Conference on Tools With Artificial Intelligence
, pp.
34
41
.
10.
Devanathan
,
S.
, and
Ramani
,
K.
,
2010
, “
Creating Polytope Representations of Design Spaces for Visual Exploration Using Consistency Techniques
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081011
.10.1115/1.4001528
11.
Yan
,
X.-T.
, and
Sawada
,
H.
,
2006
, “
A Framework for Supporting Multidisciplinary Engineering Design Exploration and Life-Cycle Design Using Underconstrained Problem Solving
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
20
(
4
), pp.
329
350
.10.1017/S0890060406060240
12.
Sam-Haroud
,
D.
, and
Faltings
,
B.
,
1996
, “
Consistency Techniques for Continuous Constraints
,”
Constraints
,
1
(
1–2
), pp.
85
118
.10.1007/BF00143879
13.
Börner
,
F.
,
Bulatov
,
A.
,
Jeavons
,
P.
, and
Krokhin
,
A.
,
2003
, “
Quantified Constraints: Algorithms and Complexity
,”
Comp. Sci. Logic
,
2803
, pp.
58
70
.
14.
Dantan
,
Y. J.
,
2005
, “
Tolerance Synthesis: Quantifier Notion and Virtual Boundary
,”
Comput.-Aided Des.
,
37
, pp.
231
240
.10.1016/j.cad.2004.06.008
15.
Qureshi
,
A. J.
,
Dantan
,
J. Y.
,
Bruyere
,
J.
, and
Bigot
,
R.
,
2010
, “
Set Based Robust Design of Mechanical Systems Using the Quantifier Constraint Satisfaction Algorithm
,”
Eng. Applic. Artif. Intell.
,
23
(
7
), pp.
1173
1186
.10.1016/j.engappai.2010.02.003
16.
Wang
,
Y.
,
2008
, “
Interpretable Interval Constraint Solvers in Semantic Tolerance Analysis
,”
Comput.-Aided Des. Appl.
,
5
, pp.
654
666
.10.3722/cadaps.2008.654-666
17.
Wang
,
Y.
,
2008
, “
Closed-Loop Analysis in Semantic Tolerance Modeling
,”
ASME J. Mech. Des.
,
130
(
6
), p.
061701
.10.1115/1.2900715
18.
Dantan
,
J. Y.
, and
Qureshi
,
A. J.
,
2009
, “
Worst-Case and Statistical Tolerance Analysis Based on Quantified Constraint Satisfaction Problems and Monte Carlo Simulation
,”
Comput.-Aided Des.
,
41
(
1
), pp.
1
12
.10.1016/j.cad.2008.11.003
19.
Benhamou
,
F.
,
Goualard
,
F.
,
Languenou
,
E.
, and
Cheristie
,
M.
,
2004
, “
Interval Constraint Solving for Camera Control and Motion Planning
,”
ACM Trans. Comput. Logic
,
5
(
4
), pp.
732
767
.10.1145/1024922.1024927
20.
Jirstrand
,
M.
,
1997
, “
Nonlinear Control System Design by Quantifier Elimination
,”
J. Symb. Comput.
,
24
, pp.
137
152
.10.1006/jsco.1997.0119
21.
Herrero
,
P.
,
Sainz
,
M. A.
,
Vehi
,
J.
, and
Jaulin
,
L.
,
2005
, “
Quantified Set Inversion Algorithm With Applications to Control
,”
Reliab. Comput.
,
11
(
5
), pp.
369
382
.10.1007/s11155-005-0044-1
22.
Herrero
,
P.
,
Sainz
,
M. Á.
,
Vehí
,
J.
, and
Jaulin
,
L.
,
2004
, “
Quantified Set Inversion With Applications to Control
,”
Proceedings of IEEE International Symposium on Computer Aided Control Systems Design
, pp.
179
183
.
23.
Ratschan
,
S.
, and
Vehı
,
J.
,
2003
, “
Robust Pole Clustering of Parametric Uncertain Systems Using Interval Methods
,”
Proceedings of the 4th IFAC Symposium on Robust Control Design
,
S.
Bittanti
, and
P.
Colaneri
, eds., pp.
323
328
.
24.
Benedetti
,
M.
,
Lallouet
,
A.
, and
Vautard
,
J.
,
2008
, “
Modeling Adversary Scheduling With QCSP+
,”
Proceedings of the 23rd Annual ACM Symposium on Applied Computing
, ACM Press, pp.
151
155
.
25.
Benedetti
,
M.
,
Lallouet
,
A.
, and
Vautard
,
J.
,
2007
, “
QCSP made Practical by Virtue of Restricted Quantification
,”
Proceedings of the 20th International Joint Conference on Artiffcial Intelligence (IJCAI 2007)
, pp.
38
43
.
26.
Sachenbacher
,
M.
, and
Maier
,
P.
,
2008
, “
Test Strategy Generation Using Quantified CSPs
,”
Proceedings of the 14th International Conference on Pingciples and Prractice of Active of Constraint Programming (CP-08)
,
P. J.
Stuckey
, ed.,
Springer
,
New York
, pp.
566
570
.
27.
Sachenbacher
,
M.
, and
Schwoon
,
S.
,
2008
, “
Model-Based Testing Using Quantified CSPs: A Map
,” Papers From the Workshop at the ECAI 2008 on Model-Based Systems, pp.
37
41
.
28.
Gardeñes
,
E.
,
Sainz
,
M. Á.
,
Jorba
,
L.
,
Calm
,
R.
,
Estela
,
R.
,
Mielgo
,
H.
, and
Trepat
,
A.
,
2001
, “
Modal Intervals
,”
Reliab. Comput.
,
7
(
2
), pp.
77
111
.10.1023/A:1011465930178
29.
Dimitrova
,
N. S.
,
Markov
,
S. M.
, and
Popova
,
E. D.
,
1992
, “
Extended Interval Arithmetics: New Results and Applications
,”
L.
Atanassova
and
J.
Herzberger
, eds.,
Comp. Arith. Enclosure Methods
, Elsevier Sci. Publishers, pp.
225
232
.
30.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J.
,
2006
,
Product Platform and Product Family Design: Methods and Applications
,
Springer-Verlag
,
New York
.
31.
Nayak
,
R. U.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2002
, “
A Variation-Based Method for Product Family Design
,”
Eng. Optimiz.
,
34
(
1
), pp.
65
81
.10.1080/03052150210910
32.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
,
2002
, “
Effective Product Family Design Using Physical Programming
,”
Eng. Optimiz.
,
34
(
3
), pp.
245
261
.10.1080/03052150211746
33.
Kaucher
,
E.
,
1980
, “
Interval Analysis in the Extended Interval Space IR
,”
Comput. Suppl.
,
2
, pp.
33
49
.10.1007/978-3-7091-8577-3
34.
Mackworth
,
A. K.
, and
Eugnene
,
C. F.
,
1985
, “
The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems
,”
Artif. Intell.
,
25
(
1
), pp.
65
73
.10.1016/0004-3702(85)90041-4
35.
Golomb
,
S. W.
, and
Baumert
,
L. D.
,
1965
, “
Backtrack Programming
,”
J. ACM
,
12
(
4
), pp.
516
524
.10.1145/321296.321300
36.
Haralick
,
R.
, and
Elliott
,
G.
,
1980
, “
Increasing Tree Search Efficiency for Constraint Satisfaction Problems
,”
Artif. Intell.
,
14
, pp.
263
313
.10.1016/0004-3702(80)90051-X
37.
Sabin
,
D.
, and
Freuder
,
E. C.
,
1994
, “
Contradicting Conventional Wisdom in Constraint Satisfaction
,”
Proceedings of the 11th European Conference on Artifcial Intelligence (ECAI-94)
,
A. G.
Cohn
, ed.,
John Wiley and Sons
,
UK
, pp.
125
129
.
38.
Apt
,
K. R.
,
1999
, “
The Essence of Constraint Propagation
,”
Theor. Comput. Sci.
,
221
(
1–2
), pp.
179
210
.10.1016/S0304-3975(99)00032-8
39.
Benhamou
,
F.
,
Goualard
,
F.
,
Granvilliers
,
L.
, and
Puget
,
J.-F.
,
1999
, “
Revising Hull and Box Consistency
,”
Proceedings of the 16th Iinternational Conference on Logic Programming
, MIT Press, pp.
230
244
.
40.
Benhamou
,
F.
, and
Granvilliers
,
L.
,
2006
, “
Continuous and Interval Constraints
,”
Handbook of Constraint Programming
,
F.
Rossi
,
P.
Van Beek
, and
T.
Walsh
, eds.,
Elsevier
, UK, pp.
574
604
.
41.
Mamoulis
,
N.
, and
Stergiou
,
K.
,
2004
, “
Algorithms for Quantified Constraint Satisfaction Problems
,”
Proceedings of the 10th International Conference on Pingciples and Prractice of Active of Constraint Programming (CP-04)
,
M.
Wallace
, ed.,
Springer
,
New York
, pp.
752
756
.
42.
Gent
,
I. P.
,
Nightingale
,
P.
, and
Stergiou
,
K.
,
2005
, “
QCSP-Solve: A Solver for Quantified Constraint Satisfaction Problems
,”
Proceedings of the 19th International Joint Conference on Artificial Intelligence
, Lawrence Erlbaum Asspciates LTD., pp.
138
143
.
43.
Gent
,
I. P.
,
Nightingale
,
P.
,
Rowley
,
A.
, and
Stergiou
,
K.
,
2008
, “
Solving Quantified Constraint Satisfaction Problems
,”
Artif. Intell.
,
172
(
6–7
), pp.
738
771
.10.1016/j.artint.2007.11.003
44.
Bordeaux
,
L.
,
Cadoli
,
M.
, and
Mancini
,
T.
,
2005
, “
CSP Properties for Quantified Constraints: Definitions and Complexity
,”
Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05)
, AAAI Press, pp.
360
366
.
45.
Collins
,
G. E.
,
1975
, “
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition
,”
Proceedings of the 2nd GI Conference on Automata Theory and Formal Languages
, pp.
134
183
.
46.
Leonid
,
L.
,
2000
, “
Variable Independence, Quantifier Elimination, and Constraint Representations
,”
Proceedings of the 27th International Colloquium Automata, Languages and Programming
,
U.
Montanari
,
J. D. P.
Rolim
, and
E.
Welzl
, eds.,
Springer-Verlag
, pp.
260
271
.
47.
John
,
K. A.
, and
Chakraborty
,
S.
,
2011
, “
A Quantifier Elimination Algorithm for Linear Modular Equations and Disequations
,”
Comput. Aided Verification
,
6806
, pp.
486
503
.10.1007/978-3-642-22110-1
48.
Kupriyanova
,
L.
,
1995
, “
Inner Estimation of the United Solution Set of Interval Linear Algebraic System
,”
Reliab. Comput.
,
1
(
1
), pp.
15
31
.10.1007/BF02390519
49.
Shary
,
S. P.
,
1996
, “
Algebraic Approach to the Interval Linear Static Identification, Tolerance, and Control Problems, or One More Application of Kaucher Arithmetic
,”
Reliab. Comput.
,
2
(
1
), pp.
3
33
.10.1007/BF02388185
50.
Shary
,
S. P.
,
2002
, “
A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity
,”
Reliab. Comput.
,
8
(
5
), pp.
321
418
.10.1023/A:1020505620702
51.
Goldsztejn
,
A.
,
2005
, “
A Right-Preconditioning Process for the Formal–Algebraic Approach to Inner and Outer Estimation of AE-Solution Sets
,”
Reliab. Comput.
,
11
(
6
), pp.
443
478
.10.1007/s11155-005-0404-x
52.
Grandon
,
C.
, and
Goldsztejn
,
A.
,
2006
, “
Inner Approximation of Distance Constraints With Existential Quantification of Parameters
,”
ACM Symposium on Applied Computing
, pp.
1660
1661
.
53.
Goldsztejn
,
A.
, and
Jaulin
,
L.
,
2006
, “
Inner and Outer Approximations of Existentially Quantified Equality Constraints
,”
Proceedings of the 16th international Conference on Principles and Practice of Constraint Programming
,
F.
Benhamou
, ed., Springer, NewYork, pp.
189
202
.
54.
Goldsztejn
,
A.
,
2006
, “
A Branch and Prune Algorithm for the Approximation of Non-Linear AE-Solution Sets
,”
Proceedings the 21th ACM Symposium on Applied computing (SAC-06)
, pp.
1650
1654
.
55.
Goldsztejn
,
A.
, and
Chabert
,
G.
,
2007
, “
A Generalized Interval LU Decomposition for the Solution of Interval Linear Systems
,”
Numer. Methods Appl.
,
4310
, pp.
312
319
.10.1007/978-3-540-70942-8
56.
Goldsztejn
,
A.
,
Michel
,
C.
, and
Rueher
,
M.
,
2008
, “
Efficient Handling of Universally Quantified Inequalities
,”
Constraint
,
14
(
1
), pp.
117
135
.10.1007/s10601-008-9053-0
57.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Pretince Hall
,
New Jersey
.
58.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J. K.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), pp.
67
84
.
59.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
Society for Industrial Mathematics
,
Philadelphia, PA
.
60.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
,
2003
, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
481
489
.10.1115/1.1586308
61.
Wong
,
J. Y.
,
2001
,
Theory of Ground Vehicles
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.