In new complex product development processes, the design problem is usually distributed to multiple actors from different disciplines. Each design actor has a limited responsibility in the design system. Therefore, each design actor has limited control over design variables and performance variables. However, design actors are not isolated since their design activities are coupled. This can generate design conflicts through inconsistencies among design objectives and working procedures. When the design convergence is not controlled, inconsistencies can distort the satisfaction equilibrium between design actors. This means that if a design actor aims at satisfying only his/her local design objective, other actors having conflicting objectives will be dissatisfied. Thus, individual satisfactions diverge. The intensity of conflicts is measured with the satisfaction divergence. In this paper, we define wellbeing indicators in order to control the convergence of distributed set-based design (SBD) processes. Wellbeing indicators reflect design actors' satisfaction degree of their process desires. We performed a constraint programming Monte Carlo simulation of our SBD framework with a complex design problem. We compared the results of wellbeing indicators with the results of the processes where design actors do not use wellbeing indicators. It is shown that when design actors have some means to control their convergence, the solution space converges to a solution in satisfaction equilibrium while epistemic uncertainty of the design model is reduced. Some conflicts are therefore prevented and the satisfaction divergence is reduced, leading thus to an improved design process performance.

References

References
1.
Papalambros
,
P. Y.
,
Michelena
,
N. F.
, and
Kikuchi
,
N.
,
1997
, “
Distributed Cooperative Systems Design
,”
Proceedings of the 11th International Conference on Engineering Design
, Tampere, Finland, pp.
265
270
.
2.
Sobieszczanski-Sobieski
,
J.
,
Barthelemy
,
J. F. M.
, and
Giles
,
G. L.
,
1984
, “
Aerospace Engineering Design by Systematic Decomposition and Multilevel Optimization
,”
14th Congr. of the International Council of the Aeronautical Sciences (ICAS)
, Toulouse,
France
.
3.
Cramer
,
E.
,
Dennis
,
J.
,
Frank
,
P.
,
Lewis
,
R.
, and
Shubin
,
G.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Control Optim.
,
4
(
4
), pp.
754
776
.10.1137/0804044
4.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
.10.1007/BF01197554
5.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
,
1996
, “
Optimization of Coupled Systems—A Critical Overview of Approaches
,”
AIAA J.
,
34
(
1
), pp.
6
17
.10.2514/3.13015
6.
Lewis
,
K.
, and
Mistree
,
F.
,
1998
, “
Collaborative, Sequential, and Isolated Decisions in Design
,”
J. Mech. Des.
,
120
(
4
), pp.
643
–652.10.1115/1.2829327
7.
Zhao
,
L.
, and
Jin
,
Y.
,
2003
, “
Work Structure Based Collaborative Engineering Design
,”
Proceedings of ASME Design Engineering Technical Conferences
,
ASME
, pp.
865
874
.
8.
Chanron
,
V.
, and
Lewis
,
K.
,
2005
, “
A Study of Convergence in Decentralized Design Processes
,”
Res. Eng. Des.
,
16
(
3
), pp.
133
145
.10.1007/s00163-005-0009-8
9.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
9
), pp.
474
–480.10.1115/1.1582501
10.
Park
,
H.
,
Michelena
,
N.
,
Kulkarni
,
D.
, and
Papalambros
,
P. Y.
,
2001
, “
Convergence Criteria for Hierarchical Overlapping Coordination of Linearly Constrained Convex Design Problems
,”
Comput. Optim. Appl.
,
18
(
3
), pp.
273
293
.10.1023/A:1011289304202
11.
Malak
,
R. J.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
,
2009
, “
Multi-Attribute Utility Analysis in Set-Based Conceptual Design
,”
Comput.-Aided Des.
,
41
(
3
), pp.
214
227
.10.1016/j.cad.2008.06.004
12.
Fathianathan
,
M.
, and
Panchal
,
J. H.
,
2009
, “
Modelling an Ongoing Design Process Utilizing Top-Down and Bottom-Up Design Strategies
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
5
), pp.
547
560
.10.1243/09544054JEM1208
13.
Antonsson
,
E. K.
, and
Otto
,
K. N.
,
1995
, “
Imprecision in Engineering Design
,”
J. Mech. Des.
,
117
(
B
), pp.
25
32
.10.1115/1.2836465
14.
Parsons
,
M. G.
,
Singer
,
D. J.
, and
Sauter
,
J. A.
,
1999
, “
A Hybrid Agent Approach for Set-Based Conceptual Ship Design
,”
Proceedings of 10th International Conference on Computer Applications in Shipbuilding
,
Cambridge
,
MA
.
15.
Ward
,
A. C.
,
Liker
,
J.
,
Sobek
,
D. K.
, and
Cristiano
,
J. J.
,
1994
, “
Set-Based Concurrent Engineering and Toyota
,”
Proceedings of ASME Design Engineering Technical Conferences
,
ASME
, pp.
79
90
.
16.
Sobek
,
D. K.
,
Ward
,
A. C.
, and
Liker
,
J.
,
1999
, “
Toyota's Principles of Set-Based Concurrent Engineering
,”
Sloan Manage. Rev.
,
40
(
2
), pp.
67
83
.
17.
McKenney
,
T. A.
,
Kemink
,
L. F.
, and
Singer
,
D. J.
,
2011
, “
Adapting to Changes in Design Requirements Using Set-Based Design
,”
Nav. Eng. J.
,
123
(
3
), pp.
66
77
.10.1111/j.1559-3584.2011.00331.x
18.
Wang
,
J.
, and
Terpenny
,
J.
,
2003
, “
Interactive Evolutionary Solution Synthesis in Fuzzy Set-Based Preliminary Engineering Design
,”
J. Intell. Manuf.
,
14
(
2
), pp.
153
167
.10.1023/A:1022947329200
19.
Lottaz
,
C.
,
Smith
,
I. F.
,
Robert-Nicoud
,
Y.
, and
Faltings
,
B.
,
2000
, “
Constraint-Based Support for Negotiation in Collaborative Design
,”
Artif. Intell. Eng.
,
14
(
3
), pp.
261
280
.10.1016/S0954-1810(00)00020-0
20.
Panchal
,
J. H.
,
Fernández
,
M. G.
,
Paredis
,
C. J. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2007
, “
An Interval-Based Constraint Satisfaction (IBCS) Method for Decentralized, Collaborative Multifunctional Design
,”
Concurr. Eng. Res. Appl.
,
15
(
3
), pp.
309
323
.10.1177/1063293X07083083
21.
Yvars
,
P.-A.
,
2009
, “
A CSP Approach for the Network of Product Lifecycle Constraints Consistency in a Collaborative Design Context
,”
Eng. Applic. Artif. Intell.
,
22
(
6
), pp.
961
970
.10.1016/j.engappai.2008.11.006
22.
Yannou
,
B.
,
Yvars
,
P.-A.
,
Hoyle
,
C.
, and
Chen
,
W.
,
2013
, “
Set-Based Design by Simulation of Usage Scenario Coverage
,”
J. Eng. Design
,
24
(
8
), pp.
575
603
.10.1080/09544828.2013.780201
23.
Brailsford
,
S. C.
,
Potts
,
C. N.
, and
Smith
,
B. M.
,
1999
, “
Constraint Satisfaction Problems: Algorithms and Applications
,”
Eur. J. Oper. Res.
,
119
(
3
), pp.
557
581
.10.1016/S0377-2217(98)00364-6
24.
Montanari
,
U.
,
1974
, “
Networks of Constraints: Fundamental Properties and Applications to Picture Processing
,”
Inf. Sci.
,
7
, pp.
95
132
.10.1016/0020-0255(74)90008-5
25.
Mackworth
,
A. K.
,
1977
, “
Consistency in Networks of Relations
,”
Artif. Intell.
,
8
(
1
), pp.
99
118
.10.1016/0004-3702(77)90007-8
26.
Faltings
,
B.
,
1994
, “
Arc-Consistency for Continuous Variables
,”
Artif. Intell.
,
65
(
2
), pp.
363
376
.10.1016/0004-3702(94)90022-1
27.
Dechter
,
R.
, and
Dechter
,
A.
,
1988
, “
Belief Maintenance in Dynamic Constraint Networks
,” Proceedings of the 7th National Conference on Artificial Intelligence,
American Association for Artificial Intelligence
, St. Paul, MN, pp.
37
42
.
28.
Yannou
,
B.
, and
Harmel
,
G.
,
2004
, “
A Comparative Study of Constraint Programming Techniques Over Intervals in Preliminary Design
,”
Proceedings of ASME Design Engineering Technical Conferences
,
ASME
, pp.
189
198
.
29.
Lottaz
,
C.
, Stouffs, R., and Smith, I.,
2000
, “
Increasing Understanding During Collaboration Through Advanced Representations
,” ITcon, 5, pp. 1–24. Available at: http://www.itcon.org/2000/1
30.
Sam-Haroud
,
D.
, and
Faltings
,
B.
,
1996
, “
Consistency Techniques for Continuous Constraints
,”
Constraints
,
1
(
1–2
), pp.
85
118
.10.1007/BF00143879
31.
Wood
,
W.
,
2001
, “
A View of Design Theory and Methodology From the Standpoint of Design Freedom
,”
Proceedings of the ASME Design Engineering Technical Conference
,
ASME
, pp.
345
355
.
32.
Canbaz
,
B.
,
Yannou
,
B.
, and
Yvars
,
P.-A.
,
2011
, “
A New Framework for Collaborative Set-Based Design: Application to the Design Problem of a Hollow Cylindrical Cantilever Beam
,”
Proceedings of ASME Design Engineering Technical Conferences
,
ASME
,
Washington, D.C.
, pp.
197
206
.
33.
Canbaz
,
B.
,
Yannou
,
B.
, and
Yvars
,
P.-A.
,
2012
, “
Constraint Programming Simulation of a Distributed Set-Based Design Framework With Control Indicators
,”
Proceedings of ASME Design Engineering Technical Conferences
,
ASME
,
Chicago, IL
.
34.
Messac
,
A.
,
1996
, “
Physical Programming—Effective Optimization for Computational Design
,”
AIAA J.
,
34
(
1
), pp.
149
158
.10.2514/3.13035
35.
Granvilliers
,
L.
,
2012
, “
Adaptive Bisection of Numerical CSPs
,”
Principles and Practice of Constraint Programming
,
M.
Milano
, ed.,
Springer
,
Berlin Heidelberg
, pp.
290
298
.
36.
Yannou
,
B.
,
Mazur
,
C.
, and
Yvars
,
P.-A.
,
2010
, “
Parameterization and Dimensioning of the Multi-Disc Clutch in the CO4 Environment
,” Ecole Centrale Paris, Technical Report No. 2010–21. Available at: http://www.lgi.ecp.fr/Biblio/PDF/CR-LGI-2010-21.pdf
37.
IBM
,
2012
, “
IBM ILOG CPLEX CP Optimizer for Constraint Programs—Features and Benefits
,” http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/about/
You do not currently have access to this content.