This paper presents an innovative solution for bounce reduction between a robotic leg and the ground by means of a semi-active compliant foot. The aim of this work is to enhance the controllability and the balance of a legged robot by improving the traction between the foot tip and the ground. The compliant foot is custom-designed for quadruped walking robots and it consists of a linear spring and a magnetorheological (MR) damper. By utilizing magnetorheological technology in the damper element, the damping coefficient of the compliant foot can be altered across a wide range without any additional moving parts. The content of this paper is twofold. In the first part the design, a prototype and a model of the semi-active compliant foot are presented, and the performance of the magnetorheological damper is experimentally studied in quasi-static and dynamic cases. Based on the quasi-static measurements, the damping force can be controlled in a range from 15 N to 310 N. From the frequency response measurements, it can be shown that the controllable damping force has a bandwidth higher than 100 Hz. The second part of this paper presents an online stiffness identification algorithm and a mathematical model of the robotic leg. A critical damping control law is proposed and implemented in order to demonstrate the effectiveness of the device that makes use of smart materials. Further on, drop tests have been carried out to assess the performance of the proposed control law in terms of bounce reduction and settling time. The results demonstrate that by real-time control of the damping force 98% bounce reduction with settling time of 170 ms can be achieved.

References

References
1.
Robinson
,
D. W.
,
Pratt
,
J. E.
,
Paluska
,
D. J.
, and
Pratt
,
G. A.
,
1999
, “
Series Elastic Actuator Development for a Biomimetic Walking Robot
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Atlanta, pp.
561
568
2.
Buchli
,
J.
,
Kalakrishnan
,
M.
,
Mistry
,
M.
,
Pastor
,
P.
, and
Schaal
,
S.
,
2009
, “
Compliant Quadruped Locomotion Over Rough Terrain
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, St. Louis, pp.
814
820
.
3.
Focchi
,
M.
,
2013
, “
Strategies to Improve the Impedance Control Performance of a Quadruped Robot
,” Ph.D thesis, Istituto Italiano di Tecnologia, Genoa, Italy.
4.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
Proceedings of IEEE—Int. Workshop on Intelligent Robots and Systems (IROS'95)
, Pittsburgh, PA., pp.
399
406
.
5.
Tonietti
,
G.
,
Schiavi
,
R.
, and
Bicchi
,
A.
,
2005
, “
Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction
,”
Proceedings of IEEE—International Conference Robotics and Automation (ICRA’05)
, Barcelona, Spain, pp.
526
531
.
6.
Hurst
,
J. W.
,
Chestnutt
,
J.
, and
Rizzi
,
A.
,
2004
, “
An Actuator With Mechanically Adjustable Series Compliance
,”
Carnegie Mellon Robotics Institute, Technical Report No. CMU-RI-TR-24.
(Available at http://www.ri.cmu.edu/pub_files/pub4/hurst_jonathan_w_2004_1/hurst_jonathan_w_2004_1.pdf)
7.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
8.
Verrelst
,
B.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Daerden
,
F.
, and
Lefeber
,
D.
,
2005
, “
The Pneumatic Biped LUCY Actuated With Pleated Pneumatic Artificial Muscles
,”
Auton. Rob.
,
18
(
2
), pp.
201
213
.10.1007/s10514-005-0726-x
9.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
,
2002
, “
Artificial Muscles: Actuators for Biorobotic Systems
,”
Int. J. Rob. Res.
,
21
(
4
), pp.
295
309
.10.1177/027836402320556331
10.
Chee–Meng
,
C.
,
Geok–Soon
,
H.
, and
Wei
,
Z.
,
2004
, “
Series Damper Actuator: A Novel Force/Torque Control Actuator
,”
4th IEEE/RAS International Conference on Humanoid Robots
, Santa Monica, pp.
533
546
.
11.
Laffranchi
,
M.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2010
, “
A Variable Physical Damping Actuator (VDPA) for Compliant Robotic Joints
,”
IEEE International Conference on Robotics and Automation (ICRA)
, Anchorage, Alaska, pp.
1668
1674
.
12.
Semini
,
C.
,
Tsagarakis
,
N. G.
,
Guglielmino
,
E.
,
Focchi
,
M.
,
Cannella
,
F.
, and
Caldwell
,
D. G.
,
2011
, “
Design of HyQ—A Hydraulically and Electrically Actuated Quadruped Robot
,”
J. Syst. Control Eng.
,
225
(
6
), pp.
831
849
.10.1177/0959651811402275
13.
Semini
,
C.
,
2010
, “
HyQ—Design and Development of a Hydraulically Actuated Quadruped Robot
,” Ph.D. thesis, Italian Institute of Technology and University of Genoa, Italy.
14.
Jalili
,
N.
,
2002
, “
A Comparative Study and Analysis of Semi-Active Vibration-Control Systems
,”
J. Vib. Acoust.
,
124
(
4
), pp.
593
605
.10.1115/1.1500336
15.
Bossis
,
G.
,
Lacis
,
S.
,
Meunier
,
A.
, and
Volkova
,
O.
,
2002
, “
Magnetorheological Fluids
,”
J. Magn. Magn. Mater.
,
252
, pp.
224
228
.10.1016/S0304-8853(02)00680-7
16.
Goncalves
,
F. D.
,
Ahmadian
,
M.
, and
Carlson
,
J. D.
,
2006
, “
Investigating the Magnetorheological Effect at High Flow Velocities
,”
Smart Mater. Struct.
,
15
(
1
), pp.
75
85
.10.1088/0964-1726/15/1/036
17.
Kostamo
,
J.
,
Kostamo
,
E.
,
Kajaste
,
J.
, and
Pietola
,
M.
,
2008
, “
Magnetorheological (MR) Damper With a Fast Response Time
,”
Proceedings of FPMC 2008
, Bath, UK, pp.
169
182
.
18.
Lord Corporation
,
2009
, “
Magnetorheological Fluid MRF132DG
,” Product specification.
19.
Wilkinson
,
W. L.
,
1960
, “
Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer
,”
London Pergamon
, pp.
50
54
.
20.
Mao
,
M.
,
Young-Tai
,
W. H.
, and
Wereley
,
N. M.
,
2007
, “
A Magnetorheological Damper With Bifold Valves for Shock and Vibration Mitigation
,”
J. Intell. Mater. Syst. Struct.
,
18
, pp.
1227
1232
.10.1177/1045389X07083131
21.
Bass
,
B. J.
, and
Christenson
,
R. E.
,
2007
, “
System Identification of a 200 kN Magneto-Rheological Fluid Damper for Structural Control in Large-Scale Smart Structures
,”
Proceedings of American Control Conference
, pp.
2690
2695
.
22.
Nguyen
,
Q.-H.
, and
Choi
,
S.-B.
,
2009
, “
Optimal Design of a Vehicle Magnetorheological Damper Considering the Damping Force and Dynamic Range
,”
J. Smart Mater. Struct.
,
18
(
1
), pp.
1
10
.10.1088/0964-1726/18/1/015013
23.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2009
,
Robotics Modelling, Planning and Control
,
Springer
,
New York
.
24.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
1993
,
Feedback Control of Dynamic Systems
,
Addison-Wesley Longman Publishing
,
Boston, MA
.
You do not currently have access to this content.