A machine with an internal variable-stiffness mechanism can adapt its output force to the working environment. In the literature, linear variable-stiffness mechanisms (LVSMs) are rarer than those producing rotary motion. This paper presents the design of a class of novel LVSMs. The idea is to parallel connect two lateral curved beams with an axial spring. Through preload adjustment of the curved beams, the output force-to-displacement curves can exhibit different stiffness. The merit of the proposed LVSMs is that very large-stiffness variation can be achieved in a compact space. The stiffness can even be tuned to zero by assigning the appropriate stiffness to the axial spring. LVSMs with pinned curved beams and fixed curved beams are investigated. To achieve the largest stiffness variation with sufficient linearity, the effects of various parameters on the force curves are discussed. Techniques to scale an LVSM and change the equilibrium position are introduced to increase the usefulness of the proposed design. Finally, the LVSMs are experimentally verified through prototypes.

References

References
1.
Carpino
,
G.
,
Accoto
,
D.
,
Sergi
,
F.
,
Tagliamonte
,
N. L.
, and
Guglielmelli
,
E.
,
2012
, “
A Novel Compact Torsional Spring for Series Elastic Actuators for Assistive Wearable Robots
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121002
.10.1115/1.4007695
2.
Knox.
,
B. T.
, and
Schmiedeler
,
J. P.
,
2009
, “
A Unidirectional Series-Elastic Actuator Design Using a Spiral Torsion Spring
,”
ASME J. Mech. Des.
,
131
(
12
), p.
125001
.10.1115/1.4000252
3.
Chu
,
C.-Y.
,
Xu
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
Design and Control of a Robotic Wrist With Two Collocated Axes of Compliant Actuation
,”
IEEE
International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp. 6156–6161. 10.1109/ICRA.2014.6907766
4.
Jutte
,
C. V.
, and
Kota
,
S.
,
2010
, “
Design of Single, Multiple, and Scaled Nonlinear Springs for Prescribed Nonlinear Responses
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011003
.10.1115/1.4000595
5.
Ham
,
R.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.10.1109/MRA.2009.933629
6.
Kuder
,
I. K.
,
Arrieta
,
A. F.
,
Raither
,
W. E.
, and
Ermanni
,
P.
,
2013
, “
Variable Stiffness Material and Structural Concepts for Morphing Applications
,”
Prog. Aerosp. Sci.
,
63
, pp.
33
55
.10.1016/j.paerosci.2013.07.001
7.
Nagarajaiah
,
S.
, and
Sahasrabudhe
,
S.
,
2006
, “
Seismic Response Control of Smart Sliding Isolated Buildings Using Variable Stiffness Systems: An Experimental and Numerical Study
,”
Earthquake Eng. Struct. Dyn.
,
35
(
2
), pp.
177
197
.10.1002/eqe.514
8.
Galloway
,
K. C.
,
Clark
,
J. E.
, and
Koditschek
,
D. E.
,
2013
, “
Variable Stiffness Legs for Robust, Efficient, and Stable Dynamic Running
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011009
.10.1115/1.4007843
9.
Kajikawa
,
S.
, and
Abe
,
K.
,
2012
, “
Robot Finger Module With Multidirectional Adjustable Joint Stiffness
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
128
135
.10.1109/TMECH.2010.2090895
10.
Wang
,
R. J.
, and
Huang
,
H. P.
,
2012
, “
AVSER—Active Variable Stiffness Exoskeleton Robot System: Design and Application for Safe Active-Passive Elbow Rehabilitation
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Kaohsiung, Taiwan, July 11–14, pp.
220
225
.10.1109/AIM.2012.6266034
11.
Park
,
J. J.
, and
Song
,
J. B.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061005
.10.1115/1.4001666
12.
Palli
,
G.
,
Berselli
,
G.
,
Melchiorri
,
C.
, and
Vassura
,
G.
,
2011
, “
Design of a Variable Stiffness Actuator Based on Flexures
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
034501
.10.1115/1.4004228
13.
González Rodríguez
,
A.
,
Chacón
,
J. M.
,
Donoso
,
A.
, and
González Rodríguez
,
A. G.
,
2011
, “
Design of an Adjustable-Stiffness Spring: Mathematical Modeling and Simulation, Fabrication and Experimental Validation
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1970
1979
.10.1016/j.mechmachtheory.2011.07.002
14.
Yalcin
,
M.
,
Uzunoglu
,
B.
,
Altintepe
,
E.
, and
Patoglu
,
V.
,
2013
, “
VNSA: Variable Negative Stiffness Actuation Based on Nonlinear Deflection Characteristics of Buckling Beams
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7, pp.
5418
5424
.10.1109/IROS.2013.6697140
15.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.10.1115/1.4005865
16.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
Design of a Constant-Force Snap-Fit Mechanism for Minimal Mating Uncertainty
,”
Mech. Mach. Theory
,
55
, pp.
34
50
.10.1016/j.mechmachtheory.2012.04.006
17.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.10.1016/j.mechmachtheory.2012.12.002
18.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.10.1115/1.4027285
19.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
,
2002
, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
,
12
(
3
), pp.
257
264
.10.1088/0960-1317/12/3/310
20.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.10.1115/1.2839009
21.
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2008
, “
Spherical Bistable Micromechanism
,”
ASME J. Mech. Des.
,
130
(
4
), p.
045001
.10.1115/1.2885079
22.
Cazottes
,
P.
,
Fernandes
,
A.
,
Hafez
,
M.
, and
Pouget
,
J.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.10.1115/1.3179003
23.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.10.1115/1.4004543
24.
Dunning
,
A. G.
,
Tolou
,
N.
,
Pluimers
,
P. P.
,
Kluit
,
L. F.
, and
Herder
,
J. L.
,
2012
, “
Bistable Compliant Mechanisms: Corrected Finite Element Modeling for Stiffness Tuning and Preloading Incorporation
,”
ASME J. Mech. Des.
,
134
(
8
), p.
084502
.10.1115/1.4006961
25.
Lan
,
C.-C.
, and
Cheng
,
Y.-J.
,
2008
, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072304
.10.1115/1.2890117
26.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
27.
Wu
,
Y.-S.
, and
Lan
,
C.-C.
,
2014
, “
Design of a Linear Variable-Stiffness Mechanism Using Preloaded Bistable Beams
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Besançon, France, July 8–11, pp.
605
610
.10.1109/AIM.2014.6878145
You do not currently have access to this content.