The paper introduces a new category of planar flexure hinges that are formed by serially connecting variable cross-sectional segments of straight longitudinal axes with segments of circular longitudinal axes. The small-displacement compliance analytical model is derived for a general hinge configuration using a matrix approach that sums the transformed local-frame compliance matrices of individual component segments. The particular class of antisymmetric flexure hinges is studied using the general model and the corresponding global-frame compliance matrix is calculated as a linear combination of compliances defining the half-hinge configuration. A serpentine (folded) flexure hinge is introduced to illustrate the generic antisymmetric design and model. Finite element simulation is used to validate the analytic compliances of this particular configuration and the compliance sensitivity to geometric parameters variation is further analyzed. The translation stiffnesses of a planar-motion stage with two identical serpentine hinges are calculated based on hinge compliances. The optimum hinge design is subsequently identified, which realizes minimum-resistance motion along the stage axial motion direction.

References

References
1.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
(
27
), pp.
151
156
.
2.
Smith
,
S. T.
,
Badami
,
V. G.
,
Dale
,
J. S.
, and
Xu
,
Y.
,
2000
, “
Elliptical Flexure Hinges
,”
Rev. Sci. Instrum.
,
68
(
3
), pp.
1474
1483
.10.1063/1.1147635
3.
Smith
,
S. T.
,
2000
,
Flexures-Elements of Elastic Mechanisms
,
Gordon and Breach
,
London
.
4.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC
,
Boca Raton
.
5.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2002
, “
Design of Symmetric Conic-Section Flexure Hinges Based on Closed-Form Compliance Equations
,”
Mech. Mach. Theory
,
37
(
5
), pp.
477
498
.10.1016/S0094-114X(02)00002-2
6.
Chen
,
G.
,
Liu
,
X.
,
Gao
,
H.
, and
Jia
,
J.
,
2009
, “
A Generalized Model for Conic Flexure Hinges
,”
Rev. Sci. Instrum.
,
80
(5), p.
055106
.10.1063/1.3137074
7.
Vallance
,
R. R.
,
Haghighian
,
B.
, and
Marsh
,
E. B.
,
2008
, “
A Unified Geometric Model for Designing Elastic Pivots
,”
Precis. Eng.
,
32
(4)
, pp.
278
288
.10.1016/j.precisioneng.2007.10.001
8.
Linß
,
S.
,
Erbe
,
T.
, and
Zentner
,
L.
,
2011
, “
On Polynomial Flexure Hinges for Increased Deflection and an Approach for Simplified Manufacturing
,”
13th World Congress in Mechanisms and Machine Science
,
Guanajato, Mexico
, pp.
1
9
.
9.
Zelenika
,
S.
,
Munteanu
,
M. Gh.
, and
de Bona
,
F.
,
2009
, “
Optimized Flexural Hinge Shapes for Microsystems and High-Precision Applications
,”
Mech. Mach. Theory
,
44
(10)
, pp.
1826
1839
.10.1016/j.mechmachtheory.2009.03.007
10.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(3)
, pp.
346
352
.10.1115/1.1372190
11.
Chen
,
G.
,
Liu
,
X.
, and
Du
,
Y.
,
2011
, “
Elliptical-Arc-Fillet Flexure Hinges: Toward a Generalized Model for Commonly Used Flexure Hinges
,”
ASME J. Mech. Des.
,
133
(8)
, p.
081002
.10.1115/1.4004441
12.
Lobontiu
,
N.
,
Cullin
,
M.
,
Ali
,
M.
, and
McFerran-Brock
,
J.
,
2011
, “
A Generalized Analytical Compliance Model for Transversely Symmetric Three-Segment Flexure Hinges
,”
Rev. Sci. Instrum.
,
82
(
10
), p.
105116
.10.1063/1.3656075
13.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Closed-Form Compliance Equations of Filleted V-Shaped Flexure Hinges for Compliant Mechanism Design
,”
Precis. Eng.
,
34
(3)
, pp.
408
418
.10.1016/j.precisioneng.2009.10.002
14.
Lobontiu
,
N.
,
Cullin
,
M.
,
Petersen
,
T.
,
Alcazar
,
J.
, and
Noveanu
,
S.
,
2014
, “
Planar Compliances of Symmetric Notch Flexure Hinges: The Right Circularly Corner-Filleted Parabolic Design
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
1
), pp.
169
176
.10.1109/TASE.2012.2228853
15.
Lobontiu
,
N.
,
Cullin
,
M.
,
Ali
,
M.
, and
Hoffman
,
J.
,
2013
, “
Planar Compliances of Thin Circular-Axis Notch Flexure Hinges With Midpoint Radial Symmetry
,”
Mech. Based Des. Struct. Mach.
,
41
(
2
), pp.
202
221
.10.1080/15397734.2012.722887
16.
Lobontiu
,
N.
, and
Cullin
,
M.
,
2013
, “
In-Plane Elastic Response of Two-Segment Circular-Axis Symmetric Notch Flexure Hinges: The Right Circular Design
,”
Precis. Eng.
,
37
(3)
, pp.
542
555
.10.1016/j.precisioneng.2012.12.007
17.
Koster
,
M.
,
1998
,
Constructieprincipes voor het Nauwkeurig Bewegen en Positioneren
,
Twente University
,
The Netherlands
.
18.
Murin
,
J.
, and
Kutis
,
V.
,
2002
, “
3D-Beam Element With Continuous Variation of the Cross-Sectional Area
,”
Comput. Struct.
,
80
(3–4)
, pp.
329
338
.10.1016/S0045-7949(01)00173-0
19.
Zhang
,
S.
, and
Fasse
,
E.
,
2001
, “
A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge
,”
ASME J. Mech. Des.
,
123
(1)
, pp.
141
147
.10.1115/1.1342157
20.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2005
, “
Circular-Hinge Line Element for Finite Element Analysis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
127
(4)
, pp.
766
773
.10.1115/1.1825046
21.
Su
,
H.-J.
,
Shi
,
H.
, and
Yu
,
J. J.
,
2012
, “
A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051009
.10.1115/1.4006441
You do not currently have access to this content.