With the increase in computer-controlled hybrid machining (e.g., mill-turn machining), one needs to discern what features of a part are created during turning (i.e., with a lathe cutter) versus those created by milling. Given a generic part, it is desirable to extract the turnable and nonturnable features in order to obtain feasible machining plans. A novel approach for automating this division and for defining the resulting turning operations in a hybrid process is proposed in this paper. Given a mill-turn part, the algorithm first identifies the dominant rotational-axis in order to quickly generate the axisymmetric “as-lathed” model. This model is then subtracted from the original part to isolate the nonturnable features. Next, the as-lathed model is translated to a label-rich graph, which is fed into a grammar reasoning algorithm to produce feasible turning sequences. During the turning process planning, the knowledge encapsulated in the design tolerances is used to guide the generation of feasible turning sequences. Two case studies are provided to explain the details of our algorithm. One of the suggested turning plans is compared with a manually proposed plan from an expert machinist and the results show the optimality of our plan in satisfying the prescribed tolerances.

References

References
1.
Fu
,
W.
,
Eftekharian
,
A.
,
Radhakrishnan
,
P.
,
Campbell
,
M.
, and
Fritz
,
C.
,
2012
, “
A Graph Grammar Based Approach to Automated Manufacturing Planning
,”
ASME
IDETC/CIE, Chicago, IL, Aug 12–15, p.
512
.10.1115/DETC2012-70406
2.
Fu
,
W.
,
Eftekharian
,
A. A.
, and
Campbell
,
M. I.
,
2013
, “
Automated Manufacturing Planning Approach Based on Volume decomposition and Graph-Grammars
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021010
.10.1115/1.4023860
3.
Eftekharian
,
A.
, and
Campbell
,
M. I.
,
2012
, “
Convex Decomposition of 3D Solid Models for Automated Manufacturing Process Planning Applications
,”
ASME
IDETC/CIE
, Chicago, IL, Aug 12–15.10.1115/DETC2012-70278
4.
Tseng
,
Y.-J.
, and
Joshi
,
S. B.
,
1998
, “
Recognition of Interacting Rotational and Prismatic Machining Features From 3-D Mill-Turn Parts
,”
Int. J. Prod. Res.
,
36
(
11
), pp.
3147
3165
.10.1080/002075498192346
5.
Waco
,
D. L.
, and
Kim
,
Y. S.
,
1994
, “
Machining Feature Reasoning Using Convex Decomposition
,”
Adv. Eng. Software
,
20
(2–3)
, pp.
107
119
.10.1016/0965-9978(94)90053-1
6.
Berra
,
P. B.
, and
Barash
,
M. M.
,
1968
, “
Automatic Process Planning and Optimization for a Turning Operation
,”
Int. J. Prod. Res.
,
7
(
2
), pp.
93
103
.10.1080/00207546808929800
7.
Lai-Yuen
,
S. K.
, and
Lee
,
Y.-S.
,
2002
, “
Turn-Mill Tool Path Planning and Manufacturing Cost Analysis for Complex Parts Machining
,”
Industrial Engineering Research (IERC) Conference
, Orlando, FL.
8.
Zhang
,
X.
,
Liu
,
R.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2011
, “
A STEP-Compliant Process Planning System for CNC Turning Operations
,”
Robot. Comput. Integr. Manuf.
,
27
(
2
), pp.
349
356
.10.1016/j.rcim.2010.07.018
9.
Huang
,
S.
,
Liu
,
D.
, and
Wang
,
B.
,
2009
, “
Research on Lathe Automatic Design System
,”
2009 International Conference on Management and Service Science
, Wuhan, China, Sept. 20–22, pp. 1–4.
10.
Culler
,
D. E.
,
1994
, “
The Turning Assistant: Automated Planning for Numerical Control Lathe Operations
,” ProQuest dissertation and theses (PQDT), University: New Mexico State University, Las Cruces, NM.
11.
Liu
,
S.
,
2004
, “
Feature Extraction and Classification for Rotational Parts Taking 3D Data Files as Input
,”
J. Chin. Inst. Ind. Eng.
,
21
(
5
), pp.
432
443
.10.1080/10170660409509422
12.
Suliman
,
S.
, and.
Awan
,
K.
,
2001
, “
Automatic Recognition of Turning Features Using 2-D Drawing Files.
,”
JSME Int. J. Ser. C
,
44
(
2
), pp.
527
533
.10.1299/jsmec.44.527
13.
Li
,
S.
, and
Shah
,
J. J.
,
2007
, “
Recognition of User-Defined Turning Features for Mill/Turn Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
3
), pp.
225
235
.10.1115/1.2767256
14.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.10.1115/1.1979509
15.
Salomons
,
O. W.
,
Poerink
,
H. J.
,
Van Slooten
,
F.
,
Van Houten
,
F. J. A. M.
, and
Kals
,
H. J. J.
,
1996
, “
A tolerancing tool based on kinematic analogies. In Computer-aided Tolerancing
,” Springer Netherlands, pp. 47–70.
16.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
,
1998
, “
Generalized 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
IIE Trans.
,
30
(
4
), pp.
367
377
.10.1080/07408179808966476
17.
Caux
,
M.
, and
Anselmetti
,
B.
,
2011
, “
3D ISO Manufacturing Specifications With Vectorial Representation of Tolerance Zones
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
577
588
.10.1007/s00170-011-3638-2
18.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Tolerance-Maps Applied to a Point-Line Cluster of Features
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
782
792
.10.1115/1.2717226
19.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
4
), pp.
347
359
.10.1115/1.2795308
20.
Huang
,
S. H.
,
Liu
,
Q.
, and
Musa
,
R.
,
2004
, “
Tolerance-Based Process Plan Evaluation Using Monte Carlo Simulation
,”
Int. J. Prod. Res.
,
42
(
23
), pp.
4871
4891
.10.1080/0020754042000264608
21.
Khan, Nadeem Shafi. “
Generalized Statistical Tolerance Analysis And Three Dimensional Model For Manufacturing Tolerance Transfer in Manufacturing Process Planning.
” PhD diss., Arizona State University, 2011.
22.
Hamou
,
S.
,
Cheikh
,
A.
,
Linares
,
J. M.
, and
Daho
,
A. C.
,
2006
, “
A Stochastic Concept for the Optimization of Manufacturing Tolerances in Computer Aided Process Plan Simulation
,”
Int. J. Comput. Integr. Manuf.
,
19
(
7
), pp.
663
675
.10.1080/09511920500174588
23.
Sobh
,
T. M.
,
Henderson
,
T. C.
, and
Zana
,
F.
,
1999
, “
Tolerance Representation and Analysis in Industrial Inspection
,”
J. Intell. Robot. Syst.
,
24
(4)
, pp.
387
401
.10.1023/A:1008015508553
24.
Desrochers
,
A.
, and
Rivibret
,
A.
,
1997
, “
A Matrix Approach to the Representation of Tolerance Zone and Clearances
,”
Int. J. Adv. Manuf. Technol.
,
13
(
9
), pp.
630
636
.10.1007/BF01350821
25.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
504
518
.10.1115/1.1701881
26.
Carrino
,
L.
,
Moroni
,
G.
,
Polini
,
W.
, and
Semeraro
,
Q.
,
2003
, “
Machining Planning for Tolerance Synthesis
,”
Mach. Sci. Technol.
,
7
(
3
), pp.
333
347
.10.1081/MST-120025282
27.
Huang
,
S. H.
,
Zhang
,
H. C.
, and
Oldham
,
W. J. B.
,
1997
, “
Tolerance Analysis for Setup Planning: A Graph Theoretical Approach
,”
Int. J. Prod. Res.
,
35
(
4
), pp.
1107
1124
.10.1080/002075497195579
28.
Campbell
,
M. I.
,
2012
, “
GRAPHSYNTH2: Software for Generative Grammars and Creative Search
,” https://bitbucket.org/MattCampbell/graphsynth
29.
Liu
,
Q.
, and
Huang
,
S.
,
2003
, “
Rigorous Application of Tolerance Analysis in Setup Planning
,”
Int. J. Adv. Manuf. Technol.
,
21
(
3
), pp.
196
207
.10.1007/s001700300022
30.
Parasolid: 3D Geometric Modeling Engine,
2012
, Siemens. Available at: http://www.plm.automation.siemens.com/en_us/products/open/parasolid/
31.
Fu
,
W.
,
Nelaturi
,
S.
,
Rangarajan
,
A.
, and
Kurtoglu
,
T.
,
2014
, “
Tolerance Analysis for Validating Manufacturing Process Plans
,”
Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2014-34329)
, Buffalo, NY, Aug 17–20.
You do not currently have access to this content.