This paper describes the AmBot, a centipede-inspired amphibious robot for monitoring the Swan-Canning River, the most important estuary system in Western Australia. The major challenge in developing such a robot lies in that the limited physical size of the robot allows only one type of propulsion system to be used both on land and on water. This is in contrast to large amphibious robots that use wheels or track systems when on land and switch to propellers when on water. The focus of this paper is on the design of a single propulsion method suited to a small-sized amphibious robot. To achieve this, centipede-inspired tracks were engineered with each track-piece consisting of an aluminum base and a polystyrene-block float. It was hypothesized that tracks fixed with floats might be able to provide effective actuation both on land and on water for small-sized robots. When on water, the tracks provide propulsion force and buoyancy so that the waterline is well controlled. When on land, the tracks effectively spread the contact force across multiblocks, leading to effective actuation and low pressure on the sandy terrain, hence protecting the beach ecosystem. Finite element analysis (FEA) was applied to optimize the main components of the AmBot for weight reduction without sacrificing functionality and safety. The AmBot uses an Android-based remote-control system via the Internet, where the accelerometer, gyroscope, global positioning system (GPS), and camera on the Android device provide integrated navigation and monitoring sensing. A prototype was developed to validate the proposed design by conducting empirical studies.

References

References
1.
Swan River Trust
,
2014
, “
About the River System
,” http://www.swanrivertrust.wa.gov.au/the-river-system/about-the-river-system
2.
Greiner
,
H.
,
Shectman
,
A.
,
Chikyung
,
W.
,
Elsley
,
R.
, and
Beith
,
P.
,
1996
, “
Autonomous Legged Underwater Vehicles for Near Land Warfare
,”
Symposium on Autonomous Underwater Vehicle Technology
, IEEE, Monterey, CA, June 2–6, pp.
41
48
.
3.
Crespi
,
A.
, and
Ijspeert
,
A.
,
2009
, “
Salamandra Robotica: A Biologically Inspired Amphibious Robot That Swims and Walks
,”
Artificial Life Models in Hardware
,
A.
Adamatzky
, and
M.
Komosinski
, eds.,
Springer
,
London, UK
, pp.
35
64
.
4.
Gregory
,
D.
,
Philippe
,
G.
,
Chris
,
P.
,
Shane
,
S.
,
Junaed
,
S.
,
Luz-Abril
,
T.-M.
,
Michael
,
J.
,
Andrew
,
G.
,
Andrew
,
H.
,
Arlene
,
R.
,
Jim
,
Z.
,
Evangelos
,
M.
,
Hui
,
L.
,
Pifu
,
Z.
,
Marti
,
B.
, and
Christina
,
G.
,
2007
, “
AQUA: An Amphibious Autonomous Robot
,”
Computer
,
40
(
1
), pp.
46
53
.10.1109/mc.2007.6
5.
Hyun Soo
,
P.
, and
Sitti
,
M.
,
2009
, “
Compliant Footpad Design Analysis for a Bio-Inspired Quadruped Amphibious Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
St. Louis, MO
, Oct. 10–15, pp.
645
651
.
6.
Kawamura
,
Y.
,
Shimoya
,
J.
,
Yoshida
,
E.
,
Kato
,
N.
,
Suzuki
,
H.
, and
Senga
,
H.
,
2010
, “
Design and Development of Amphibious Robot With Fin Actuators
,”
Int. J. Offshore Polar Eng.
,
20
(
3
), pp.
175
180
.
7.
Luo
,
F.
,
Xie
,
G.
,
Wang
,
Q.
, and
Wang
,
L.
,
2010
, “
Development and Gait Analysis of Five-Bar Mechanism Implemented Quadruped Amphibious Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
IEEE
,
Montreal, ON
, July 6–9, pp.
633
638
.
8.
Rui
,
D.
,
Junzhi
,
Y.
,
Qinghai
,
Y.
,
Min
,
T.
, and
Jianwei
,
Z.
,
2010
, “
Robust Gait Control in Biomimetic Amphibious Robot Using Central Pattern Generator
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
Montreal, ON
, Oct. 18–22, pp.
3067
3072
.
9.
Şafak
,
K.
, and
Adams
,
G.
,
2002
, “
Dynamic Modeling and Hydrodynamic Performance of Biomimetic Underwater Robot Locomotion
,”
Auton. Robots
,
13
(
3
), pp.
223
240
.10.1023/A:1020516108579
10.
Cubero
,
S. N.
,
2012
, “
Design Concepts for a Hybrid Swimming and Walking Vehicle
,”
Procedia Eng.
,
41
(
0
), pp.
1211
1220
.10.1016/j.proeng.2012.07.303
11.
Lock
,
R. J.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2013
, “
Impact of Marine Locomotion Constraints on a Bio-Inspired Aerial-Aquatic Wing: Experimental Performance Verification
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011001
.10.1115/1.4025471
12.
Bachmann
,
R. J.
,
Boria
,
F. J.
,
Vaidyanathan
,
R.
,
Ifju
,
P. G.
, and
Quinn
,
R. D.
,
2009
, “
A Biologically Inspired Micro-Vehicle Capable of Aerial and Terrestrial Locomotion
,”
Mech. Mach. Theory
,
44
(
3
), pp.
513
526
.10.1016/j.mechmachtheory.2008.08.008
13.
Paolo
,
A.
,
Luigi
,
F.
,
Mattia
,
F.
, and
Guido
,
V.
,
2006
, “
A Wave-Based CNN Generator for the Control and Actuation of a Lamprey-Like Robot
,”
Int. J. Bifurcation Chaos
,
16
(
01
), pp.
39
46
.10.1142/S0218127406014563
14.
Shumei
,
Y.
,
Shugen
,
M.
,
Bin
,
L.
, and
Yuechao
,
W.
,
2009
, “
An Amphibious Snake-Like Robot: Design and Motion Experiments on Ground and in Water
,”
International Conference on Information and Automation
,
IEEE
,
Zhuhai, Macau
, June 22–24, pp.
500
505
.
15.
Matsuo
,
T.
,
Yokoyama
,
T.
,
Ueno
,
D.
, and
Ishii
,
K.
,
2008
, “
Biomimetic Motion Control System Based on a CPG for an Amphibious Multi-Link Mobile Robot
,”
J. Bionics Eng.
,
5
, pp.
91
97
.10.1016/S1672-6529(08)60078-5
16.
Consi
,
T. R.
,
Ardaugh
,
B. R.
,
Erdmann
,
T. R.
,
Matsen
,
M.
,
Peterson
,
M.
,
Ringstad
,
J.
,
Vechart
,
A.
, and
Verink
,
C.
,
2009
, “
An Amphibious Robot for Surf Zone Science and Environmental Monitoring
,”
OCEANS, MTS/IEEE Biloxi—Marine Technology for Our Future: Global and Local Challenges
, IEEE, Biloxi, MS, Oct. 26–29, pp.
1
7
.
17.
Boxerbaum
,
A. S.
,
Werk
,
P.
,
Quinn
,
R. D.
, and
Vaidyanathan
,
R.
,
2005
, “
Design of an Autonomous Amphibious Robot for Surf Zone Operation: Part I Mechanical Design for Multi-Mode Mobility
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
IEEE
,
Monterey, CA
, July 24–28, pp.
1459
1464
.
18.
Harkins
,
R.
,
Ward
,
J.
,
Vaidyanathan
,
R.
,
Boxerbaum
,
A. S.
, and
Quinn
,
R. D.
,
2005
, “
Design of an Autonomous Amphibious Robot for Surf Zone Operations: Part II—Hardware, Control Implementation and Simulation
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
IEEE
,
Monterey, CA
, July 24–28, pp.
1465
1470
.
19.
Yuangui
,
T.
,
Chongjie
,
L.
,
Aiqun
,
Z.
, and
Jiancheng
,
Y.
,
2010
, “
Optimal Distribution of Propulsion for an Amphibious Robot Based on Wheel-Propeller-Leg Mixed Thrusters
,”
11th International Conference on Control Automation Robotics & Vision
,
IEEE
,
Singapore
, Dec. 7–10, pp.
822
826
.
20.
Kaznov
,
V.
, and
Seeman
,
M.
,
2010
, “
Outdoor Navigation With a Spherical Amphibious Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
Montreal, ON
, Oct. 18–22, pp.
5113
5118
.
21.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.10.1115/1.3125205
22.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
Helical Origami Structure Inspired Worm Robot With Shape Memory Alloy Actuators
,”
ASME
Paper No. DETC2014-34676.10.1115/DETC2014-34676
23.
Dooyeol
,
K.
,
Jaemin
,
Y.
, and
Soohyun
,
K.
,
2010
, “
Centipede Robot for Uneven Terrain Exploration: Design and Experiment of the Flexible Biomimetic Robot Mechanism
,”
3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
,
IEEE
,
Tokyo, Japan
, Sept. 26–29, pp.
877
881
.
24.
Hoffman
,
K. L.
, and
Wood
,
R. J.
,
2010
, “
Towards a Multi-Segment Ambulatory Microrobot
,”
2010 IEEE International Conference on Robotics and Automation
,
IEEE
,
Anchorage, AK
, May 3–7, pp.
1196
1202
.
25.
Salameh
,
P.
,
2011
, “
Limb Designs for Salamander and Centipede Robots
,” Ecole Polytechnique Federale De Lausanne, Switzerland.
26.
Kelty
,
R.
, and
Bliven
,
S.
,
2003
, “
Environmental and Aesthetic Impacts of Small Docks and Piers
,” National Oceanic and Atmospheric Administration (NOAA), Sliver Spring, MD.
27.
Frank
,
W.
,
2007
,
Fluid Mechanics
,
6th ed.
,
McGraw-Hill
,
New York
.
28.
Richards
,
K. L.
,
2012
,
Design Engineer's Handbook
,
Taylor & Francis
,
London, UK
.
29.
Giurgiutiu
,
V.
, and
Lyshevski
,
S. E.
,
2003
,
Micromechatronics: Modeling, Analysis, and Design With Matlab
,
Taylor & Francis
,
London, UK
.
30.
Bureau of Meterology, Australian Government,
2013
, “
Climate Statistics for Australian locations
,” http://www.bom.gov.au/climate/averages/tables/cw_009225.shtml
You do not currently have access to this content.