The natural-language approach to identifying biological analogies exploits the existing format of much biological knowledge, beyond databases created for biomimetic design. However, designers may need to select analogies from search results, during which biases may exist toward: specific words in descriptions of biological phenomena, familiar organisms and scales, and strategies that match preconceived solutions. Therefore, we conducted two experiments to study the effect of abstraction on overcoming these biases and selecting biological phenomena based on analogical similarities. Abstraction in our experiments involved replacing biological nouns with hypernyms. The first experiment asked novice designers to choose between a phenomenon suggesting a highly useful strategy for solving a given problem, and another suggesting a less-useful strategy, but featuring bias elements. The second experiment asked novice designers to evaluate the relevance of two biological phenomena that suggest similarly useful strategies to solve a given problem. Neither experiment demonstrated the anticipated benefits of abstraction. Instead, our abstraction led to: (1) participants associating nonabstracted words to design problems and (2) increased difficulty in understanding descriptions of biological phenomena. We recommend investigating other ways to implement abstraction when developing similar tools or techniques that aim to support biomimetic design.

References

References
1.
Shu
,
L. H.
,
2010
, “
A Natural-Language Approach to Biomimetic Design
,”
AIEDAM
,
24
(
4
), pp.
507
519
.10.1017/S0890060410000363
2.
Shu
,
L. H.
,
Ueda
,
K.
,
Chiu
,
I.
, and
Cheong
,
H.
,
2011
, “
Biologically Inspired Design
,”
CIRP Ann.
,
60
(
2
), pp.
673
693
.10.1016/j.cirp.2011.06.001
3.
Chiu
,
I.
, and
Shu
,
L. H.
,
2007
, “
Biomimetic Design Through Natural-Language Analysis to Facilitate Cross-Domain Information Retrieval
,”
AIEDAM
,
21
(
1
), pp.
45
59
.
4.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R.
, and
McAdams
,
D.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.10.1115/1.4003249
5.
Ke
,
J.
,
Wallace
,
J. S.
, and
Shu
,
L. H.
,
2009
, “
Supporting Biomimetic Design Through Categorization of Natural-Language Keyword-Search Results
,”
ASME
Paper No. DETC2009-86681. 10.1115/DETC2009-86681
6.
Ke
,
J.
,
Chiu
,
I.
,
Wallace
,
J. S.
, and
Shu
,
L. H.
,
2010
, “
Supporting Biomimetic Design by Embedding Metadata in Natural-Language Corpora
,”
ASME
Paper No. DETC2010-29057. 10.1115/DETC2010-29057
7.
Cheong
,
H.
, and
Shu
,
L. H.
,
2014
, “
Retrieving Causally Related Functions From Natural-Language Text for Biomimetic Design
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081008
.10.1115/1.4027494
8.
Mak
,
T. W.
, and
Shu
,
L. H.
,
2008
, “
Using Descriptions of Biological Phenomena for Idea Generation
,”
Res. Eng. Des.
,
19
(
1
), pp.
21
28
.10.1007/s00163-007-0041-y
9.
Cheong
,
H.
, and
Shu
,
L. H.
,
2013a
, “
Using Templates and Mapping Strategies to Support Analogical Transfer in Biomimetic Design
,”
Des. Stud.
,
34
(
6
), pp.
706
728
.10.1016/j.destud.2013.02.002
10.
Cheong
,
H.
,
Hallihan
,
G.
, and
Shu
,
L. H.
,
2014
, “
Design Problem Solving With Biological Analogies: A Verbal Protocol Study
,”
AIEDAM
,
28
(
1
), pp.
27
47
.10.1017/S0890060413000486
11.
Qian
,
L.
, and
Gero
,
J. S.
,
1996
, “
Function-Behaviour-Structure Paths and Their Role in Analogy-Based Design
,”
AIEDAM
,
10
(
4
), pp.
289
312
.10.1017/S0890060400001633
12.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.10.1109/64.590078
13.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
,
2008
, “
Modality and Representation in Analogy
,”
AIEDAM
,
22
(
2
), pp.
85
100
.10.1017/S0890060408000061
14.
Zahner
,
D.
,
Nickerson
,
J. V.
,
Tversky
,
B.
,
Corter
,
J. E.
, and
Ma
,
J.
,
2010
, “
A fix for fixation? Rerepresenting and Abstracting as Creative Processes in the Design of Information Systems
,”
AIEDAM
,
24
(
2
), pp.
231
232
.10.1017/S0890060410000077
15.
Cheong
,
H.
, and
Shu
,
L. H.
,
2013b
, “
Reducing Cognitive Bias in Biomimetic Design by Abstracting Nouns
,”
CIRP Ann.
,
62
(
1
), pp.
111
114
.10.1016/j.cirp.2013.03.064
16.
17.
Gero
,
J. S.
,
1990
, “
Design Prototypes: A Knowledge Representation Schema for Design
,”
AI Mag.
,
2
(
4
), pp.
26
36
.
18.
Goel
,
A. K.
,
1991
, “
A Model Based Approach to Case Adaptation
,”
Proceedings of 13th Annual Conference of the Cognitive Science Society
, Chicago, IL, pp.
143
148
.
19.
Umeda
,
Y.
,
Ishii
,
M.
,
Yoshioka
,
M.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
,
1996
, “
Supporting Conceptual Design Based on the Function–Behaviour–State Modeler
,”
AIEDAM
,
10
(
4
), pp.
275
288
.10.1017/S0890060400001621
20.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
AIEDAM
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
21.
Linsey
,
J.
,
Markman
,
A.
, and
Wood
,
K.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.10.1115/1.4006145
22.
Mak
,
T. W.
, and
Shu
,
L. H.
,
2004
, “
Abstraction of Biological Analogies for Design
,”
CIRP Ann.
,
53
(
1
), pp.
117
120
.10.1016/S0007-8506(07)60658-1
23.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.10.1016/j.destud.2009.04.003
24.
Vattam
,
S. S.
,
Helms
,
M. E.
, and
Goel
,
A. K.
,
2010
, “
A Content Account of Creative Analogies in Biologically Inspired Design
,”
AIEDAM
,
24
(
4
), pp.
467
481
.10.1017/S089006041000034X
25.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
,
2010
, “
A Methodology for Supporting “Transfer” in Biomimetic Design
,”
AIEDAM
,
24
(
4
), pp.
483
505
.10.1017/S0890060410000351
26.
Purves
,
W. K.
,
Sadava
,
D.
,
Orians
,
G. H.
, and
Heller
,
H. C.
,
2001
,
Life, The Science of Biology
,
6th ed.
,
Sinauer Associates
,
Sunderland, MA
.
27.
Mehta
,
C. R.
, and
Hilton
,
J. F.
,
1993
, “
Exact Power of Conditional and Unconditional Tests: Going Beyond the 2 × 2 Contingency Table
,”
Am. Stat.
,
47
(
2
), pp.
91
98
.
28.
Vakili
,
V.
, and
Shu
,
L. H.
,
2001
, “
Towards Biomimetic Concept Generation
,”
ASME DETC/CIE
, Pittsburgh, PA, Sept. 9–12, DETC2001/DTM-21715.
29.
Prince
,
M. J.
, and
Felder
,
R. M.
,
2006
, “
Inductive Teaching and Learning Methods: Descriptions, Comparisons, and Research Bases
,”
J. Eng. Educ.
,
95
(
2
), pp.
123
138
.10.1002/j.2168-9830.2006.tb00884.x
30.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
2nd ed.
,
Springer-Verlag
,
London, UK
.
31.
Gero
,
J. S.
,
Kannengiesser
,
U.
, and
Pourmohamadi
,
M.
,
2012
, “
Commonalities Across Designing: Empirical Results
,” Proceedings of Conference on Design Computing and Cognition, College Station, TX, June 7–9, pp.
265
284
.
32.
Bhatta
,
S.
, and
Goel
,
A.
,
1997
, “
Learning Generic Mechanisms for Innovative Design Adaptation
,”
J. Learn. Sci.
,
6
(
4
), pp.
367
396
.10.1207/s15327809jls0604_2
33.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2012
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(2), p.
021007
.10.1115/1.4023158
34.
Gero
,
J. S.
,
Jiang
,
H.
, and
Williams
,
C. B.
,
2012
, “
Does Using Different Concept Generation Techniques Change the Design Cognition of Design Students?
,”
ASME
Paper No. DETC2012/DTM-71165. 10.1115/DETC2012-71165
You do not currently have access to this content.