Fundamental characteristics identified via observation of the inherently sustainable biosphere can inform and guide environmentally benign design and manufacturing (EBDM). In support of this premise, this paper identifies characteristics, extracts biological principles, translates them into guidelines for EBDM, and briefly reports on their application in situations of engineering interest. It outlines and illustrates the use of constant comparative method (CCM) to identify and extract fundamental biosphere characteristics from biology and ecology literature. Then, it translates these biological principles into general guidelines with associated metrics. To illustrate the efficacy of this approach, bio-inspired metrics are used for the purposes of assessing micro/nanoscale self-cleaning surfaces and designing a carpet tile recycling network. These efforts suggest that learning the phenomena responsible for the biosphere's inherent sustainability can yield insight into EBDM.

References

References
1.
U.S.Congress,
1992
,
Green Products by Design: Choices for a Cleaner Environment
, No. OTA-E-541,
Office of Technology Assessment
,
Washington, DC
.
2.
Keoleian
,
G. A.
, and
Menerey
,
D.
,
1993
, “
Life-Cycle Design Guidance Manual: Environmental Requirements and the Product System
,” US Environmental Protection Agency, Office of Research and Development, Washington, DC
3.
Telenko
,
C.
,
Seepersad
,
C. C.
, and
Webber
,
M. E.
,
2008
, “
A Compilation of Design for Environment Principles and Guidelines
,”
ASME
Paper No. DETC2008-49651. 10.1115/DETC2008-49651
4.
Telenko
,
C.
, and
Seepersad
,
C. C.
,
2010
, “
A Methodology for Identifying Environmentally Conscious Guidelines for Product Design
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091009
.10.1115/1.4002145
5.
Reap
,
J.
,
Roman
,
F.
,
Duncan
,
S.
, and
Bras
,
B.
,
2008
, “
A Survey of Unresolved Problems in Life Cycle Assessment. Part 1: Goal & Scope and Inventory Analysis
,”
Int. J. Life Cycle Assess.
,
13
(
4
), pp.
290
300
.10.1007/s11367-008-0008-x
6.
Reap
,
J.
,
Roman
,
F.
,
Duncan
,
S.
, and
Bras
,
B.
,
2008
, “
A Survey of Unresolved Problems in Life Cycle Assessment. Part 2: Impact Assessment and Interpretation
,”
Int. J. Life Cycle Assess.
,
13
(
5
), pp.
374
388
.10.1007/s11367-008-0009-9
7.
Ball
,
P.
,
2001
, “
Life's Lessons in Design
,”
Nature
,
409
(6818), pp.
413
416
.10.1038/35053198
8.
Beattie
,
A.
, and
Ehrlich
,
P. R.
,
2001
,
Wild Solutions: How Biodiversity Is Money in the Bank
,
Yale University
,
New Haven, CT
.
9.
Benyus
,
J. M.
,
1997
,
Biomimicry: Innovation Inspired by Nature
,
HarperCollins
,
New York
.
10.
Goldin
,
D. S.
,
Venneri
,
S. L.
, and
Noor
,
A. K.
,
2000
, “
The Great Out of the Small
,”
Mech. Eng.
,
122
(11), pp.
70
79
.
11.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.10.1098/rsif.2006.0127
12.
Weaver
,
J.
,
Kleinke
,
D.
, and
Lynch-Caris
,
T.
, “
Extending the TRIZ Methodology to Connect Engineering Design Problems to Biological Solutions
,”
Proceedings of the National Collegiate Inventors & Innovators Alliance 16th Annual Meeting
, San Francisco, CA, Mar. 22, pp.
1
7
.
13.
Glier
,
M. W.
,
Tsenn
,
J.
,
Linsey
,
J. S.
, and
McAdams
,
D. A.
,
2014
, “
Evaluating the Directed Intuitive Approach for Bioinspired Design
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071012
.10.1115/1.4026825
14.
Wertz
,
F. J.
, and
Charmaz
,
K.
,
2011
,
Five Ways of Doing Qualitative Analysis: Phenomenological Psychology, Grounded Theory, Discourse Analysis, Narrative Research and Intuitive
,
Guilford Publications
,
New York
.
15.
Strauss
,
A. L.
, and
Corbin
,
J.
,
1994
, “
Grounded Theory Methodology: An Overview
,”
Handbook of Qualitative Research
,
N. K.
Denzin
, and
Y. S.
Lincoln
, eds.,
SAGE Publications
,
London, UK
.
16.
Holton
,
J. A.
,
2007
, “
The Coding Process and Its Challenges
,”
The SAGE Handbook of Grounded Theory
,
A.
Bryant
,
K.
Charmaz
, eds.,
SAGE Publications
, Los Angeles, CA, pp.
265
289
.
17.
Glaser
,
B. G.
, and
Strauss
,
A. L.
,
1967
,
The Discovery of Grounded Theory
,
Aldine Publishing Company
,
Chicago, IL
.
18.
Strauss
,
A. L.
, and
Corbin
,
J.
,
1998
,
Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory
,
SAGE Publications, Inc.
,
Thousand Oaks, CA
.
19.
Auerbach
,
C. F.
, and
Silverstein
,
L. B.
,
2003
,
Qualitative Data
,
New York University
,
New York
.
20.
Lempert
,
L. B.
,
2007
, “
Asking Questions of the Data: Memo Writing in the Grounded Theory Tradition
,”
The SAGE Handbook of Grounded Theory
,
A.
Bryant
, and
K.
Charmaz
, eds.,
SAGE Publications
, Los Angeles, CA, pp.
245
264
.
21.
Neinhuis
,
C.
, and
Barthlott
,
W.
,
1997
, “
Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces
,”
Ann. Bot.
,
79
(
6
), pp.
667
677
.10.1006/anbo.1997.0400
22.
Odum
,
E. P.
,
1987
,
Basic Ecology
,
Saunders College Publishing
,
Philadelphia, PA
.
23.
Reap
,
J. J.
,
2009
, “
Holistic Biomimicry: A Biologically Inspired Approach to Environmentally Benign Engineering
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
24.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
1997
, “
Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces
,”
Planta
,
202
(
1
), pp.
1
8
.10.1007/s004250050096
25.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
26.
Wenzel
,
R. N.
,
1936
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.10.1021/ie50320a024
27.
Barthlott
,
W.
, and
Neinhuis
,
C.
,
2001
, “
Lotus Effect: Nature's Model for Self-Cleaning Surfaces
,”
Int. Text. Bull.
,
47
(
1
), pp.
8
12
.
28.
Autumn
,
K.
, and
Hansen
,
W.
,
2006
, “
Ultrahydrophobicity Indicates a Non Adhesive Default State in Gecko Setae
,”
J. Comp. Physiol. A
,
192
(
11
), pp.
1205
1212
.10.1007/s00359-006-0149-y
29.
Vermeij
,
G. J.
,
2006
, “
Historical Contingency and the Purported Uniqueness of Evolutionary Innovations
,”
Proc. Natl Acad. Sci.
,
103
(
6
), pp.
1804
1809
.10.1073/pnas.0508724103
30.
Wagner
,
T.
,
Neinhuis
,
C.
, and
Barthlott
,
W.
,
1996
, “
Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures
,”
Acta Zool.
,
76
(
3
), pp.
213
225
.10.1111/j.1463-6395.1996.tb01265.x
31.
Baum
,
C.
,
Meyer
,
W.
,
Stelzer
,
R.
,
Fleischer
,
L.-G.
, and
Siebers
,
D.
,
2002
, “
Average Nanorough Skin Surface of the Pilot Whale (Globicephala melas, Delphinidae): Considerations on the Self-Cleaning Abilities Based on Nanoroughness
,”
Mar. Biol.
,
140
(3), pp.
653
657
.10.1007/s00227-001-0710-8
32.
Burton
,
Z.
, and
Bhushan
,
B.
,
2005
, “
Hydrophobicity, Adhesion and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nano-Electromechanical Systems
,”
Nano Lett.
,
5
(
8
), pp.
1607
1613
.10.1021/nl050861b
33.
Bascompte
,
J.
, and
Jordano
,
P.
,
2007
, “
Plant-Animal Mutualistic Networks: The Architecture of Biodiversity
,”
Annu. Rev. Ecol. Evol. Syst.
,
38
(
1
), pp.
567
593
.10.1146/annurev.ecolsys.38.091206.095818
34.
de Ruiter
,
P. C.
,
Neufel
,
A.-M.
, and
Moore
,
J. C.
,
1995
, “
Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems
,”
Science
,
269
(
5228
), pp.
1257
1260
.10.1126/science.269.5228.1257
35.
May
,
R. M.
,
1972
, “
Will a Large Complex System Be Stable?
,”
Nature
,
238
(
5364
), pp.
413
414
.10.1038/238413a0
36.
Okuyama
,
T.
, and
Holland
,
J. N.
,
2008
, “
Network Structural Properties Mediate the Stability of Mutualistic Communities
,”
Ecol. Lett.
,
11
(
3
), pp.
208
216
.10.1111/j.1461-0248.2007.01137.x
37.
Pimm
,
S. L.
,
Lawton
,
J. H.
, and
Cohen
,
J. E.
,
1991
, “
Food Web Patterns and Their Consequences
,”
Nature
,
350
(
6320
), pp.
669
674
.10.1038/350669a0
38.
Warren
,
P. H.
,
1990
, “
Variation in Food Web Structure: The Determinants of Connectance
,”
Am. Nat.
,
136
(
5
), pp.
689
698
.10.1086/285123
39.
Lindeman
,
R. L.
,
1942
, “
The Trophic-Dynamic Aspect of Ecology
,”
Ecology
,
23
(
4
), pp.
399
417
.10.2307/1930126
40.
Patten
,
B. C.
,
1985
, “
Energy Cycling in the Ecosystem
,”
Ecological Modell.
,
28
(
1–2
), pp.
1
71
.10.1016/0304-3800(85)90013-4
41.
Fath
,
B. D.
,
2007
, “
Structural Food Web Regimes
,”
Ecol. Modell.
,
208
(
2
), pp.
391
394
.10.1016/j.ecolmodel.2007.06.013
42.
Jordano
,
P.
,
Bascompte
,
J.
, and
Olesen
,
J. M.
,
2003
, “
Invariant Properties in Coevolutionary Networks of Plant-Animal Interactions
,”
Ecol. Lett.
,
6
(
1
), pp.
69
81
.10.1046/j.1461-0248.2003.00403.x
43.
Pimm
,
S. L.
,
1984
, “
The Complexity and Stability of Ecosystems
,”
Nature
,
307
(
5949
), pp.
321
326
.10.1038/307321a0
44.
Fath
,
B. D.
, and
Halnes
,
G.
,
2007
, “
Cyclic Energy Pathways in Ecological Food Webs
,”
Ecol. Modell.
,
208
(
1
), pp.
17
24
.10.1016/j.ecolmodel.2007.04.020
45.
Hardy
,
C.
,
2001
, “
Industrial Ecosystems and Food Web Theory
,” Masters thesis, Yale University, New Haven, CT.
46.
Schoener
,
T. H.
,
1989
, “
Food Webs From the Small to the Large
,”
Ecology
,
70
(
6
), pp.
1559
1589
.10.2307/1938088
47.
Rooney
,
N.
,
McCann
,
K.
,
Gellner
,
G.
, and
Moore
,
J. C.
,
2006
, “
Structural Asymmetry and the Stability of Diverse Food Webs
,”
Nature
,
442
(
7100
), pp.
265
269
.10.1038/nature04887
48.
Finn
,
J. T.
,
1976
, “
Measures of Ecosystem Structure and Function Derived From Analysis of Flows
,”
J. Theor. Biol.
,
56
(
2
), pp.
363
380
.10.1016/S0022-5193(76)80080-X
49.
Leontief
,
W. W.
,
1936
, “
Quantitative Input-Output Relations in the Economic System of the United States
,”
Rev. Econ. Stat.
,
18
(3), pp.
105
125
.10.2307/1927837
50.
Bailey
,
R.
,
Allen
,
J. K.
, and
Bras
,
B.
,
2004
, “
Applying Ecological Input-Output Flow Analysis to Material Flows in Industrial Systems—Part I: Tracing Flows
,”
J. Ind. Ecol.
,
8
(
1–2
), pp.
45
68
.10.1162/1088198041269346
51.
Bailey
,
R.
,
Allen
,
J. K.
, and
Bras
,
B.
,
2004
, “
Applying Ecological Input-Output Flow Analysis to Material Flows in Industrial Systems—Part II: Flow Metrics
,”
J. Ind. Ecol.
,
8
(
1–2
), pp.
69
91
.10.1162/1088198041269472
52.
Montoya
,
J. M.
,
Pimm
,
S. L.
, and
Sole
,
R. V.
,
2006
, “
Ecological Networks and Their Fragility
,”
Nature
,
442
(
7100
), pp.
259
264
.10.1038/nature04927
53.
Layton
,
A.
,
Reap
,
J.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2012
, “
Correlation Between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles
,”
PLOS ONE
,
7
(
12
), pp.
1
7
.10.1371/journal.pone.0051841
54.
Jeswiet
,
J.
, and
Hauschild
,
M.
,
2008
, “
Market Forces and the Need to Design for the Environment
,”
Int. J. Sustainable Manuf.
,
1
(
1–2
), pp.
41
57
.10.1504/IJSM.2008.019226
55.
Anastas
,
P. T.
, and
Zimmerman
,
J. B.
,
2003
, “
Design Through the 12 Principles of Green Engineering
,”
Environ. Sci. Technol.
,
37
(
5
), pp.
94A
101A
.10.1021/es032373g
56.
Robèrt
,
K. H.
,
Schmidt-Bleek
,
B.
,
Aloisi de Larderel
,
J.
,
Basile
,
G.
,
Jansen
,
J. L.
,
Kuehr
,
R.
,
Price Thomas
,
P.
,
Suzuki
,
M.
,
Hawken
,
P.
, and
Wackernagel
,
M.
,
2002
, “
Strategic Sustainable Development—Selection, Design and Synergies of Applied Tools
,”
J. Cleaner Prod.
,
10
(
3
), pp.
197
214
.10.1016/S0959-6526(01)00061-0
57.
Graedel
,
T. E.
, and
Allenby
,
B. R.
,
1996
,
Design for Environment
,
Prentice Hall
,
Upper Saddle River, NJ
.
58.
Ehrenfeld
,
J.
,
2003
, “
Putting a Spotlight on Metaphors and Analogies in Industrial Ecology
,”
J. Ind. Ecol.
,
7
(
1
), pp.
1
4
.10.1162/108819803766729131
59.
Raibeck
,
L.
,
Reap
,
J.
, and
Bras
,
B.
,
2009
, “
Investigating Environmental Burdens and Benefits of Biologically Inspired Self-Cleaning Surfaces
,”
CIRP ASME J. Manuf. Sci. Technol.
,
1
(
4
), pp.
230
236
.10.1016/j.cirpj.2009.05.004
60.
Hardy
,
C.
, and
Graedel
,
T. E.
,
2002
, “
Industrial Ecosystems as Food Webs
,”
J. Ind. Ecol.
,
6
(
1
), pp.
29
38
.10.1162/108819802320971623
61.
Chertow
,
M. R.
,
2000
, “
Industrial Symbiosis: Literature and Taxonomy
,”
Annu. Rev. Energy Environ.
,
25
(
1
), pp.
313
337
.10.1146/annurev.energy.25.1.313
62.
Ehrenfeld
,
J.
, and
Gertler
,
N.
,
1997
, “
Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg
,”
J. Ind. Ecol.
,
1
(
1
), pp.
67
79
.10.1162/jiec.1997.1.1.67
63.
Chertow
,
M. R.
,
2007
, “
Uncovering” Industrial Symbiosis
,”
J. Ind. Ecol.
,
11
(
1
), pp.
11
30
.10.1162/jiec.2007.1110
64.
Korhonen
,
J.
, and
Wihersaari
,
M.
,
1999
, “
Industrial Ecology of a Regional Energy Supply System
,”
Greener Manage. Int.
,
26
, pp.
57
67
.
65.
Jacobsen
,
N. B.
,
2006
, “
Industrial Symbiosis in Kalundborg, Denmark—A Quantitative Assessment of Economic and Environmental Aspects
,”
J. Ind. Ecol.
,
10
(
1–2
), pp.
239
255
.10.1162/108819806775545411
66.
Yang
,
S. L.
, and
Feng
,
N. P.
,
2008
, “
Case Study of Industrial Symbiosis: Nanning Sugar Co., Ltd. in China
,”
Resour. Conserv. Recycl.
,
52
(
5
), pp.
813
820
.10.1016/j.resconrec.2007.11.008
67.
Chertow
,
M. R.
,
2002
,
Developing Industrial Ecosystems: Approaches, Cases and Tools
,
Yale School of Forestry and Environmental Studies
,
New Haven, CT
.
68.
van Beers
,
D.
,
Corder
,
G.
,
Bossilkov
,
A.
, and
van Berkel
,
R.
,
2007
, “
Industrial Symbiosis in the Australian Minerals Industry—The Cases of Kwinana and Gladstone
,”
J. Ind. Ecol.
,
11
(
1
), pp.
55
72
.10.1162/jiec.2007.1161
69.
Park
,
H. S.
,
Rene
,
E. R.
,
Choi
,
S. M.
, and
Chiu
,
A. S. F.
,
2008
, “
Strategies for Sustainable Development of Industrial Park in Ulsan, South Korea—From Spontaneous Evolution to Systematic Expansion of Industrial Symbiosis
,”
J. Environ. Manage.
,
87
(
1
), pp.
1
13
.10.1016/j.jenvman.2006.12.045
70.
Korhonen
,
J.
, and
Snakin
,
J. P.
,
2005
, “
Analysing the Evolution of Industrial Ecosystems: Concepts and Application
,”
Ecol. Econ.
,
52
(
2
), pp.
169
186
.10.1016/j.ecolecon.2004.07.016
71.
Schandl
,
H.
, and
Eisenmenger
,
N.
,
2006
, “
Regional Patterns in Global Resource Extraction
,”
J. Ind. Ecol.
,
10
(
4
), pp.
133
147
.10.1162/jiec.2006.10.4.133
72.
Weisz
,
H.
,
Krausmann
,
F.
,
Amann
,
C.
,
Eisenmenger
,
N.
,
Erb
,
K.-H.
,
Hubacek
,
K.
, and
Fischer-Kowalski
,
M.
,
2006
, “
The Physical Economy of the European Union: Cross-Country Comparison and Determinants of Material Consumption
,”
Ecol. Econ.
,
58
(
4
), pp.
676
698
.10.1016/j.ecolecon.2005.08.016
73.
Moriguchi
,
Y.
, and
Terazono
,
A.
,
2000
, “
A Simplified Model for Spatially Differentiated Impact Assessment of Air Emissions
,”
Int. J. Life Cycle Assess.
,
5
(
5
), pp.
281
286
.10.1007/BF02977580
74.
Schandl
,
H.
,
Poldy
,
F.
,
Turner
,
G. M.
,
Measham
,
T. G.
,
Walker
,
D. H.
, and
Eisenmenger
,
N.
,
2008
, “
Australia's Resource Use Trajectories
,”
J. Ind. Ecol.
,
12
(
5–6
), pp.
669
685
.10.1111/j.1530-9290.2008.00075.x
75.
Decker
,
E. H.
,
Elliott
,
S.
,
Smith
,
F. A.
,
Blake
,
D. R.
, and
Rowland
,
F. S.
,
2000
, “
Energy and Material Flow Through the Urban Ecosystem
,”
Annu. Rev. Energy Environ.
,
25
(
1
), pp.
685
740
.10.1146/annurev.energy.25.1.685
76.
Sendra
,
C.
,
Gabarrell
,
X.
, and
Vicent
,
T.
,
2007
, “
Material Flow Analysis Adapted to an Industrial Area
,”
J. Cleaner Prod.
,
15
(
17
), pp.
1706
1715
.10.1016/j.jclepro.2006.08.019
77.
Gerst
,
M. D.
,
2009
, “
Linking Material Flow Analysis and Resource Policy via Future Scenarios of In-Use Stock: An Example for Copper
,”
Environ. Sci. Technol.
,
43
(
16
), pp.
6320
6325
.10.1021/es900845v
78.
Guidry
,
C.
,
2008
, “
Modified Comparative Life Cycle Assessment of End-of-Life Options for Post-Consumer Products in Urban Regions
,” MSME Masters, Georgia Institute of Technology, Atlanta, GA.
79.
Intlekofer
,
K.
,
2009
, “
Environmental Assessment: Carpet Tile Maintenance and Recycling
,” Georgia Institute of Technology, Atlanta, GA, Project Report No. ISYE 8803.
80.
Briand
,
F.
,
1983
, “
Environmental Control of Food Web Structure
,”
Ecol. Soc. Am.
,
64
(
2
), pp.
253
263
.10.2307/1937073
81.
Briand
,
F.
, and
Cohen
,
J. E.
,
1987
, “
Environmental Correlates of Food Chain Length
,”
Science
,
238
(
4829
), pp.
956
960
.10.1126/science.3672136
You do not currently have access to this content.