Understanding the relationships between structures and functions is important for engineering design in general and for biomimetic design specifically. In nature, different structures provide a wide range of functions efficiently and with minimal costs. Based on the analyses of 140 biological systems that are derived from biomimetic sources by a TRIZ based method, we provide a list and examples of structure–function patterns that repeat in biomimetic applications. These patterns are presented through a technical lens and a complete system model, serving as engines or brakes of the biological system, exploiting energy sources or blocking them, respectively. This list of patterns serves as an index of clues that open doors for further investigation of the complexity of these relations. Understanding the mechanisms behind these meta-level patterns is required for a successful biomimetic design process. The list provides both keywords for biological databases search and clues for abstraction of biological texts. The TRIZ based method that has been used for this study can be further used for modeling other biological systems during the abstraction stage of the biomimetic design process. Thus, we offer a bridge between biology and technology and set a foundation for a new biomimetic design method.

References

References
1.
Ball
,
P.
,
2009
,
Shapes—Nature's Patterns a Tapestry in Three Parts
,
Oxford University
, New York.
2.
Foy
,
S.
,
1983
,
The Grand Design: Form and Colour in Animals
,
Prentice-Hall, Inc
, Englewood Cliffs, NJ.
3.
Haeckel
,
E.
,
Breidbach
,
B.
,
Eibl-Eibesfeldt
,
I.
,
Hartmann
,
R.
,
Schons
,
M.
, and
Ashdown
,
M.
,
1998
,
Art Forms in Nature: The Prints of Ernst Haeckel
,
Prestel Munich
.
4.
Pearce
,
P.
,
1978
,
Structure in Nature is a Strategy for Design
,
The MIT
Press, Cambridge, MA.
5.
Stevens
,
P. S.
,
1974
,
Patterns in Nature
,
Atlantic-Little Brown Books
,
Boston, MA
.
6.
Thompson
,
D.
,
1966
,
On Growth and Form
,
Cambridge University
, New York.
7.
Tsui
,
E.
,
1999
,
Evolutionary Architecture-Nature as a Basis for Design
,
Wiley
,
New York
.
8.
Vogel
,
S.
,
1988
,
Life's Devices-The Physical World of Animals and Plants
,
Princeton University Press
,
Princeton
.
9.
Bejan
,
A.
,
2000
,
Shape and Structure, From Engineering to Nature
,
Cambridge University
Press, Cambridge, UK.
10.
Ritchey
,
T.
,
2002
, Modelling Complex Socio-Technical Systems Using Morphological Analysis. Adapted from an address to the Swedish Parliamentary IT Commission, Stockholm, 2002.
11.
Gleich
,
A.
,
Pade
,
C.
,
Petschow
,
U.
, and
Pissarskoi
,
E.
,
2009
,
Potentials and Trends in Biomimetics
,
Springer
, Heidelberg.
12.
Vincent
,
J.
,
2009
, “
Biomimetics—A Review
,”
Proc. Inst. Mech. Eng
,
223
(
8
), pp.
919
939
.10.1243/09544119JEIM561
13.
Koehl
,
M. A. R.
,
1996
, “
When Does Morphology Matter?
,”
Annu. Rev. Ecol. Syst.
,
27
, pp.
501
542
.10.1146/annurev.ecolsys.27.1.501
14.
Lauder
,
G. V.
,
1990
, “
Functional Morphology and Systematics: Studying Functional Patterns in an Historical Context
,”
Annu. Rev. Ecol. Syst.
,
21
, pp.
317
340
.10.1146/annurev.es.21.110190.001533
15.
Sartori
,
J.
,
Pal
,
U.
, and
Chakrabarti
,
A.
,
2010
, “
A Methodology for Supporting “Transfer” in Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
483
505
.10.1017/S0890060410000351
16.
Goel
,
A. K.
,
Rugaber
,
S.
, and
Vattam
,
S.
,
2009
, “
Structure, Behavior, and Function of Complex Systems: The Structure, Behavior, and Function Modeling Language
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
23
(
1
), pp.
23
35
.10.1017/S0890060409000080
17.
DANE, Design by Analogy to Nature Engine, a Tool to Facilitate Analogical Biologically Inspired Design, http://dilab.cc.gatech.edu/dane/
18.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
19.
Fratzl
,
P.
,
2007
, “
Biomimetic Materials Research: What Can We Really Learn From Nature's Structural Materials?
,”
J. R. Soc. Interface
,
4
(
15
), pp.
637
642
.10.1098/rsif.2007.0218
20.
Gorb
,
S. N.
,
2006
,
Functional Surfaces in Biology: Mechanisms and Applications, in Biomimetics: Biologically Inspired Technologies
,
Y.
Bar-Cohen
, ed.,
CRC
,
Boca Raton, FL
, pp.
381
397
.
21.
Gorb
,
S.
,
2001
,
Attachment Devices of Insect Cuticle
,
Kluwer, New York
.
22.
Hoeller
,
N.
,
Salustri
,
F.
,
DeLuca
,
D.
,
Pedersen
,
Z.
,
Love
,
M.
,
McKeag
,
T.
,
Stephers
,
F.
,
Reap
,
J.
, and
Sopchac
,
L.
,
2007
, “
Patterns From Nature
,”
Proceedings Society for Experimental Mechanics Annual Conference and Exposition on Experimental and Applied Mechanics
, Springfield, MA, June 4–6.
23.
Alexander
,
C.
,
Ishikawa
,
S.
, and
Silverstein
,
M.
,
1977
,
A Pattern Language: Towns, Buildings, Construction
(Center for Environmental Structure Series),
Oxford University Press
,
New York
.
24.
Speck
,
T.
, and
Burgert
,
I.
,
2008
, “
Process Sequences in Biomimetic Research
,”
Des. Nat.
,
4
, pp.
3
11
.10.2495/DN080011
25.
Helms
,
M.
,
Vattam
,
S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.10.1016/j.destud.2009.04.003
26.
Mak
,
T.
, and
Shu.
,
L.
,
2004
, “
Abstraction of Biological Analogies for Design
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
117
120
.10.1016/S0007-8506(07)60658-1
27.
Vattam
,
S.
,
Helms
,
M.
, and
Goel
,
A. K.
,
2010
, “
A Content Account of Creative Analogies in Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
467
481
.10.1017/S089006041000034X
28.
Goel
,
A. K.
,
1997
, “
Design, Analogy, and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.10.1109/64.590078
29.
Goel
,
A. K.
, and
Bhatta
,
S. R.
,
2004
, “
Use of Design Patterns in Analogy-Based Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.10.1016/j.aei.2004.09.003
30.
Goel
,
A. K.
,
Bras
,
B.
,
Helms
,
M.
,
Rugaber
,
S.
,
Tovey
,
C.
,
Vattam
,
S.
,
Weissburg
,
M.
,
Wiltgen
,
B.
, and
Yen
,
J.
,
2011
, “
Design Patterns and Cross-Domain Analogies in Biologically Inspired Sustainable Design
,”
2011 AAAI Spring Symposium Series
, Palo Alto, CA, Mar. 21–23.
31.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
32.
AskNature Comprehensive Catalog of Nature's Solutions to Human Design Challenges, www.asknature.org
33.
The American Biomimicry Institute and Guild. Biomimicry 3.8, www.biomimicry.net
34.
Archive of Biomimicry News & Research, www.biomimicrynews.org
35.
Altshuller
,
G.
,
1999
, “
The Innovation Algorithm
,”
TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center, Inc
,
Worcester, MA
.
36.
Vincent
,
J. F.
, and
Mann
,
D. L.
,
2002
, “
Systematic Technology Transfer From Biology to Engineering
,”
Philos. Trans. R. Soc. London, Ser. A
,
360
(
1791
), pp.
159
173
.10.1098/rsta.2001.0923
37.
Vincent
,
J. F.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A. K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.10.1098/rsif.2006.0127
38.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
,
2008
, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
,
130
(12)
, p.
121102
.10.1115/1.2992062
39.
Nagel
,
J. K.
,
Nagel
,
R. L.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
Function-Based, Biologically Inspired Concept Generation
,”
Arif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
521
535
.10.1017/S0890060410000375
40.
Helfman
,
C. Y.
,
Reich
,
Y.
, and
Greenberg
,
S.
,
2011
, “
What Can We Learn From Biological Systems When Applying the Law of System Completeness?
,” ETRIA European TRIZ Association 2011, Dublin.
41.
Helfman
,
C. Y.
,
Reich
,
Y.
, and
Greenberg
,
S.
,
2012
, “
Substance Field Analysis and Biological Functions
,” ETRIA European TRIZ Association, Lisbon.
42.
Mann
,
D.
, “
The TRIZ Route to Naturally Better System Design
,” Systematic Innovation, www.systematic-innovation.com
43.
Bukhman
,
I.
,
2012
,
TRIZ Technology for Innovation
,
Cubic Creativity Company
, Taipei, Taiwan.
44.
Berdonosov
,
V.
,
2011
, “
Application Characteristics of the Law of System Completeness
,”
Procedia Eng.
,
9
, pp.
337
344
.10.1016/j.proeng.2011.03.123
47.
Sharklet Technologies
, http://sharklet.com/technology/
49.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.10.1038/35015073
50.
Solga
,
A.
,
Cerman
,
Z.
,
Striffler
,
B. F.
,
Spaeth
,
M.
, and
Barthlott
,
W.
,
2007
, “
The Dream of Staying Clean: Lotus and Biomimetic Surfaces
,”
Bioinspiration Biomimetics
,
2
(
4
), pp.
S126
–S139.10.1088/1748-3182/2/4/S02
51.
Kirschner
,
C. M.
, and
Brennan
,
A. B.
,
2012
, “
Bio-Inspired Antifouling Strategies
,”
Annu. Rev. Mater. Res.
,
42
, pp.
211
229
.10.1146/annurev-matsci-070511-155012
53.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature's Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.10.1016/j.pmatsci.2007.06.001
54.
Cartailler
,
J. P.
, http://www.symmation.com/
55.
Lev-Yadun
,
S.
,
Katzir
,
G.
, and
Neeman
,
G.
,
2009
, “
Rheum Palaestinum (Desert Rhubarb), a Self-Irrigating Desert Plant
,”
Naturwissenschaften
,
96
(
3
), pp.
393
397
.10.1007/s00114-008-0472-y
56.
Turner
,
J. S.
, and
Soar
,
R. C.
,
2008
, “
Beyond Biomimicry: What Termites Can Tell Us About Realizing the Living Building
,”
Proceedings of 1st International Conference on Industrialized, Intelligent Construction
, Loughborough University, UK, May 14–16.
57.
Wit
,
R
.
, and
Lieckfeld
,
C.-F.
(eds.), 1991, Bionics—Nature Patents, PRO FUTURA Verlag, Munich.
58.
Tributsch
,
H.
,
1982
,
How Life Learned to Live: Adaptation in Nature
,
MIT
Press, Cambridge, MA.
59.
Seki
,
Y.
,
Schneider
,
M. S.
, and
Meyers
,
M. A.
,
2005
, “
Structure and Mechanical Behavior of a Toucan Beak
,”
Acta Mater.
,
53
(
20
), pp.
5281
5296
.10.1016/j.actamat.2005.04.048
62.
Quick
,
D.
,
2011
, “
Filter Feeding Basking Shark Inspires More Efficient Hydroelectric Turbine
,” http://www.gizmag.com/strait-power-hydroelectric-turbine/17801/, last accessed January 24, 2013.
63.
Dawson
,
C.
,
Vincent
,
J. F.
, and
Rocca
,
A. M.
,
1997
, “
How Pine Cones Open
,”
Nature
,
390
(
6661
), p.
668
.10.1038/37745
64.
Wainwright
,
P. C.
,
Turingan
,
R. G.
, and
Brainerd
,
E. L.
,
1995
, “
Functional Morphology of Pufferfish Inflation: Mechanism of the Buccal Pump
,”
Copeia
,
1995
(
3
), pp.
614
625
.10.2307/1446758
65.
Scarr
,
G.
,
2011
, “
Helical Tensegrity as a Structural Mechanism in Human Anatomy
,”
Int. J. Osteopath. Med.
,
14
(
1
), pp.
24
32
.10.1016/j.ijosm.2010.10.002
66.
Wainwright
,
S.
,
Vosburgh
,
F.
, and
Hebrank
,
J.
,
1978
, “
Shark Skin: Function in Locomotion
,”
Science
,
202
(
4369
), pp.
747
749
.10.1126/science.202.4369.747
67.
Smith
,
B. L.
,
Schäffer
,
T. E.
,
Viani
,
M.
,
Thompson
,
J. B.
,
Frederick
,
N. A.
,
Kindt
,
J.
,
Belcher
,
A.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
1999
, “
Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites
,”
Nature
,
399
(
6738
), pp.
761
763
.10.1038/21607
69.
Cassidy
,
J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.10.3109/03008208909103905
71.
75.
Vogel
,
S.
,
2000
,
Cats' Paws and Catapults: Mechanical Worlds of Nature and People
,
WW Norton & Company
, New York.
76.
Vattam
,
S.
, and
Goel
,
A.
,
2011
, “
Foraging for Inspiration: Understanding and Supporting the Information Seeking Practices of Biologically Inspired Designers
,”
ASME
Paper No. DETC2011-48238.10.1115/DETC2011-48238
77.
Nagel
,
J. K.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
ASME
Paper No. DETC2010-28233.10.1115/DETC2010-28233
78.
Shu
,
L.
,
2010
, “
A Natural-Language Approach to Biomimetic Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
24
(
4
), pp.
507
–519.10.1017/S0890060410000363
79.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(2), p.
021007
.10.1115/1.4003249
80.
Yen
,
J.
,
Helms
,
M.
,
Goel
,
A.
,
Tovey
,
C.
, and
Weissburg
,
M.
,
2014
,
Adaptive Evolution of Teaching Practices in Biologically Inspired Design, in Biologically Inspired Design
,
Springer-Verlag, London
, pp.
153
199
.
81.
Coppola
,
G.
, and
Caro
,
C.
,
2008
, “
Oxygen Mass Transfer in a Model Three-Dimensional Artery
,”
J. R. Soc. Interface
,
5
(
26
), pp.
1067
1075
.10.1098/rsif.2007.1338
82.
Arzt
,
E.
,
Gorb
,
S.
, and
Spolenak
,
R.
,
2003
, “
From Micro to Nano Contacts in Biological Attachment Devices
,”
Proc. Natl. Acad. Sci. U.S.A
,
100
(
19
), pp.
10603
10606
.10.1073/pnas.1534701100
83.
Nachtigall
,
W.
,
2002
,
Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler
,
Springer, Berlin, DE
.
84.
Reich
,
Y.
, and
Shai
,
O.
,
2012
, “
The Interdisciplinary Engineering Knowledge Genome
,”
Res. Eng. Des.
,
23
(
3
), pp.
251
264
.10.1007/s00163-012-0129-x
85.
Reich
,
Y.
,
Shai
,
O.
,
Subrahmanian
,
E.
,
Hatchuel
,
A.
, and
Le Masson
,
P.
,
2008
, “
The Interplay Between Design and Mathematics: Introduction to Bootstrapping Effects
,”
ASME
Paper No. ESDA2008-59410.10.1115/ESDA2008-59410
You do not currently have access to this content.