Locating relevant biological analogies is a challenge that lies at the heart of practicing biologically inspired design. Current computer-assisted biologically inspired design tools require human-in-the-loop synthesis of biology knowledge. Either a biology expert must synthesize information into a standard form, or a designer must interpret and assess biological strategies. These approaches limit knowledge breadth and tool usefulness, respectively. The work presented in this paper applies the technique of human computation, a historically successful approach for information retrieval problems where both breadth and accuracy are required, to address a similar problem in biologically inspired design. The broad goals of this work are to distribute the knowledge synthesis step to a large number of nonexpert humans, and to capture that synthesized knowledge in a format that can support analogical reasoning between designed systems and biological systems. To that end, this paper presents a novel human computation game and accompanying information model for collecting computable descriptions of biological strategies, an assessment of the quality of these descriptions gathered from experimental data, and a brief evaluation of the game's entertainment value. Two successive prototypes of the biology phenomenon categorizer (BioP-C); a cooperative, asymmetric, online game; were each deployed in a small engineering graduate class in order to collect assertions about the biological phenomenon of cell division. Through the act of playing, students formed assertions describing key concepts within textual passages. These assertions are assessed for their correctness, and these assessments are used to identify directly measurable correctness indicators. The results show that the number of hints in a game session is negatively correlated with assertion correctness. Further, BioP-C assertions are rated as significantly more correct than randomly generated assertions in both prototype tests, demonstrating the method's potential for gathering accurate information. Tests on these two different BioP-C prototypes produce average assertion correctness assessments of 3.19 and 2.98 on a five-point Likert scale. Filtering assertions on the optimal number of game session hints within each prototype test increases these mean values to 3.64 and 3.36. The median assertion correctness scores are similarly increased from 3.00 and 3.00 in both datasets to 4.08 and 3.50. Players of the game expressed that the fundamental anonymous interactions were enjoyable, but the difficulty of the game can harm the experience. These results indicate that a human computation approach has the potential to solve the problem of low information breadth currently faced by biologically inspired design databases.

References

References
1.
Casakin
,
H.
, and
Goldschmidt
,
G.
,
1999
, “
Expertise and the Use of Visual Analogy: Implications for Design Education
,”
Des. Stud.
,
20
(
2
), pp.
153
175
.10.1016/S0142-694X(98)00032-5
2.
Christensen
,
B. T.
, and
Schunn
,
C. D.
,
2007
, “
The Relationship of Analogical Distance to Analogical Function and Pre-Inventive Structure: The Case of Engineering Design
,”
Mem. Cognit.
,
35
(
1
), pp.
29
38
.10.3758/BF03195939
3.
Eckert
,
C. M.
,
Stacey
,
M.
, and
Earl
,
C.
,
2005
, “
References to Past Designs
,”
Proceedings of the Studying Designers'05
, J. S. Gero, and N. Bonnardel, eds., Aix-en-Provence, France, Oct. 17–18, pp.
3
21
.
4.
Leclercq
,
P.
, and
Heylighen
,
A.
,
2002
, “
5,8 Analogies per Hour
,”
Artificial Intelligence in Design’02
, J. S. Gero, ed., Springer, Dordecht, The Netherlands, pp.
285
303
.
5.
Kolodner
,
J. L.
,
1997
, “
Educational Implications of Analogy: A View From Case-Based Reasoning
,”
Am. Psychol.
,
52
(
1
), pp.
57
66
.10.1037/0003-066X.52.1.57
6.
Manning
,
C. D.
, and
Schütze
,
H.
,
1999
,
Foundation of Statistical Natural Language Processing
,
The MIT Press
,
Cambridge, MA
.
7.
Mauldin
,
M. L.
,
1994
, “
Chatterbots, Tinymuds, and the Turing Test: Entering the Loebner Prize Competition
,”
12th National Conference on Artificial Intelligence (AAAI '94), Seattle, WA, Aug. 1–4
, pp.
16
21
.
8.
Bhatta
,
S.
, and
Goel
,
A.
,
1997
, “
Learning Generic Mechanisms for Innovative Design Adaptation
,”
J. Learn. Sci.
,
6
(
4
), pp.
367
396
.10.1207/s15327809jls0604_2
9.
Goel
,
A.
, and
Bhatta
,
S.
,
2004
, “
Design Patterns: An Unit of Analogical Transfer in Creative Design
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
85
94
.10.1016/j.aei.2004.09.003
10.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.10.1115/1.1475317
11.
Linsey
,
J.
,
Wood
,
K.
, and
Markman
,
A.
,
2008
, “
Increasing Innovation: Presentation and Evaluation of the Wordtree Design-by-Analogy Method
,”
ASME
Paper No. DETC2008-49317. 10.1115/DETC2008-49317
12.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.10.1115/1.4023158
13.
Poppa
,
K. R.
,
2011
, “
Theory and Application of Vector Space Similarity Measures in Computer Assisted Conceptual Design
,” Ph.D. dissertation, Oregon State University, Corvallis, OR.
14.
Poppa
,
K.
,
Arlitt
,
R.
, and
Stone
,
R.
, 2013, “
An Approach to Automated Concept Generation Through Latent Semantic Indexing
,”
Proceedings of the Industrial and Systems Engineering Research Conference
, IE, San Juan, Puerto Rico, May 18–22.
15.
Miller
,
G. A.
,
1995
, “
WordNet: A Lexical Database for English
,”
Commun. ACM
,
38
(
11
), pp.
39
41
.10.1145/219717.219748
16.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
17.
Vattam
,
S. S.
,
Goel
,
A. K.
,
Rugaber
,
S.
,
Hmelo-Silver
,
C. E.
,
Jordan
,
R.
,
Gray
,
S.
, and
Sinha
,
S.
,
2011
, “
Understanding Complex Natural Systems by Articulating Structure-Behavior-Function Models
,”
Educ. Technol. Soc.
,
14
(
1
), pp.
66
81
.
18.
Nagel
,
J. K.
,
2014
, “
A Thesaurus for Bioinspired Engineering Design
,”
Biologically Inspired Design
,
Springer
,
New York
, pp.
63
94
.10.1007/978-1-4471-5248-4_4
19.
Gentner
,
D.
,
1983
, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cognit. Sci.
,
7
(
2
), pp.
155
170
.10.1207/s15516709cog0702_3
20.
Vattam
,
S.
,
Wiltgen
,
B.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
,
2010
, “
DANE: Fostering Creativity in and Through Biologically Inspired Design
,”
Design Creativity 2010
, Springer-Verlag, London, pp.
115
122
.10.1007/978-0-85729-224-7_16
21.
Wiltgen
,
B.
,
Vattam
,
S.
,
Helms
,
M.
,
Goel
,
A. K.
, and
Yen
,
J.
, 2011, “
Learning Functional Models of Biological Systems for Biologically Inspired Design
,”
11th IEEE International Conference on Advanced Learning Technologies (ICALT)
, Athens, GA, July 6–8, pp.
355
357
.
22.
Arlitt
,
R.
,
O'Halloran
,
B.
,
Novak
,
J.
,
Stone
,
R.
, and
Tumer
,
I.
,
2012
, “
Applying Designer Feedback to Generate Requirements for an Intuitive Biologically Inspired Design Tool
,”
ASME
Paper No. IMECE2012-89657. 10.1115/IMECE2012-89657
23.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
24.
Cheong
,
H.
, and
Shu
,
L.
,
2012
, “
Automatic Extraction of Causally Related Functions From Natural-Language Text for Biomimetic Design
,”
ASME
Paper No. DETC2012-70732. 10.1115/DETC2012-70732
25.
Shu
,
L. H.
,
2010
, “
A Natural-Language Approach to Biomimetic Design
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
24
(
4
), pp.
507
519
.10.1017/S0890060410000363
26.
Stamatatos
,
E.
,
2009
, “
A Survey of Modern Authorship Attribution Methods
,”
J. Am. Soc. Inf. Sci. Technol.
,
60
(
3
), pp.
538
556
.10.1002/asi.21001
27.
Von Ahn
,
L.
,
Blum
,
M.
,
Hopper
,
N. J.
, and
Langford
,
J.
,
2003
, “
CAPTCHA: Using Hard AI Problems for Security
,”
Advances in Cryptology‚ EUROCRYPT
2003, Warsaw, Poland, May 4–8, pp.
294
311
.
28.
Von Ahn
,
L.
,
Maurer
,
B.
,
McMillen
,
C.
,
Abraham
,
D.
, and
Blum
,
M.
,
2008
, “
Recaptcha: Human-Based Character Recognition via Web Security Measures
,”
Science
,
321
(
5895
), pp.
1465
1468
.10.1126/science.1160379
29.
Lintott
,
C. J.
,
Schawinski
,
K.
,
Slosar
,
A.
,
Land
,
K.
,
Bamford
,
S.
,
Thomas
,
D.
,
Raddick
,
M. J.
,
Nichol
,
R. C.
,
Szalay
,
A.
, and
Andreescu
,
D.
,
2008
, “
Galaxy Zoo: Morphologies Derived From Visual Inspection of Galaxies From the Sloan Digital Sky Survey
,”
Mon. Not. R. Astron. Soc.
,
389
(
3
), pp.
1179
1189
.10.1111/j.1365-2966.2008.13689.x
30.
Marc Mercuri
,
M. V.
,
Tim Harris
, and
Bowman
,
C.
,
2010
, “
NASA, JPL, Microsoft, ‘Be a Martian’
,” http://beamartian.jpl.nasa.gov/
31.
Von Ahn
,
L.
, and
Dabbish
,
L.
,
2006
, “
Labeling Images With a Computer Game
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
, ACM, Montreal, Quebec, Canada, Apr. 22–27, pp.
319
326
.
32.
Von Ahn
,
L.
,
Kedia
,
M.
, and
Blum
,
M.
,
2006
, “
Verbosity: A Game for Collecting Common-Sense Facts
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
, ACM, Montreal, Quebec, Canada, Apr. 22–27, pp.
75
78
.10.1145/1124772.1124784
33.
Law
,
E. L.
,
Von Ahn
,
L.
,
Dannenberg
,
R. B.
, and
Crawford
,
M.
,
2007
, “
TagATune: A Game for Music and Sound Annotation
,”
Proceedings of ISMIR
, Vienna, Austria, Sept. 23–27, p.
2
.
34.
Seemakurty
,
N.
,
Chu
,
J.
,
Von Ahn
,
L.
, and
Tomasic
,
A.
,
2010
, “
Word Sense Disambiguation via Human Computation
,”
Proceedings of the ACM SIGKDD Workshop on Human Computation
, ACM, Washington, DC, July 25–28, pp.
60
63
.10.1145/1837885.1837905
35.
Quinn
,
A. J.
, and
Bederson
,
B. B.
,
2011
, “
Human Computation: A Survey and Taxonomy of a Growing Field
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
, ACM, Vancouver, BC, Canada, May 7–12, pp.
1403
1412
.10.1145/1978942.1979148
36.
Von Ahn
,
L.
,
2005
,
Human Computation
,
Carnegie Mellon University
, Pittsburgh, PA.
37.
Cooper
,
S.
,
Treuille
,
A.
,
Barbero
,
J.
,
Leaver-Fay
,
A.
,
Tuite
,
K.
,
Khatib
,
F.
,
Snyder
,
A. C.
,
Beenen
,
M.
,
Salesin
,
D.
, and
Baker
,
D.
,
2010
, “
The Challenge of Designing Scientific Discovery Games
,”
Proceedings of the 5th International Conference on the Foundations of Digital Games
, ACM, Monterey, CA, June 19–21, pp.
40
47
.10.1145/1822348.1822354
38.
Khatib
,
F.
,
DiMaio
,
F.
,
Cooper
,
S.
,
Kazmierczyk
,
M.
,
Gilski
,
M.
,
Krzywda
,
S.
,
Zabranska
,
H.
,
Pichova
,
I.
,
Thompson
,
J.
,
Popović
,
Z.
,
Jaskolski
,
M.
, and
Baker
,
D.
,
2011
, “
Crystal Structure of a Monomeric Retroviral Protease Solved by Protein Folding Game Players
,”
Nat. Struct. Mol. Biol.
,
18
(
10
), pp.
1175
1177
.10.1038/nsmb.2119
39.
Eiben
,
C. B.
,
Siegel
,
J. B.
,
Bale
,
J. B.
,
Cooper
,
S.
,
Khatib
,
F.
,
Shen
,
B. W.
,
Players
,
F.
,
Stoddard
,
B. L.
,
Popovic
,
Z.
, and
Baker
,
D.
,
2012
, “
Increased Diels-Alderase Activity Through Backbone Remodeling Guided by Foldit Players
,”
Nat. Biotechnol.
,
30
(
2
), pp.
190
192
.10.1038/nbt.2109
40.
Singh
,
P.
,
Lin
,
T.
,
Mueller
,
E. T.
,
Lim
,
G.
,
Perkins
,
T.
, and
Zhu
,
W. L.
,
2002
, “
Open Mind Common Sense: Knowledge Acquisition From the General Public
,”
On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE
, Irvine, CA, Oct. 30–Nov. 1, pp.
1223
1237
.10.1007/3-540-36124-3_77
41.
Liu
,
H.
, and
Singh
,
P.
,
2004
, “
ConceptNet‚ A Practical Commonsense Reasoning Tool-Kit
,”
BT Technol. J.
,
22
(
4
), pp.
211
226
.10.1023/B:BTTJ.0000047600.45421.6d
42.
Liu
,
H.
, and
Singh
,
P.
,
2004
, “
Commonsense Reasoning in and Over Natural Language
,” Commonsense Reasoning in and Over Natural Language (Lecture Notes in Computer Science), Springer, Berlin, Heidelberg, pp.
293
306
.
43.
Speer
,
R.
,
Havasi
,
C.
, and
Lieberman
,
H.
,
2008
, “
AnalogySpace: Reducing the Dimensionality of Common Sense Knowledge
,”
Proceedings of AAAI
, Chicago, IL, July 13–17, pp.
548
553
.
44.
Hofmann
,
T.
,
1999
, “
Probabilistic Latent Semantic Indexing
,” Proceedings of the 22nd Annual International
ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, Berekely, CA, Aug. 15–19, pp.
50
57
.10.1145/312624.312649
45.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
46.
Sullivan
,
S. M.
, and
Maddock
,
J. R.
,
2000
, “
Bacterial Division: Finding the Dividing Line
,”
Curr. Biol.
,
10
(
6
), pp.
R249
R252
.10.1016/S0960-9822(00)00376-6
47.
2013
, “
ScienceDirect
,” http://www.sciencedirect.com/
48.
Glier
,
M. W.
,
McAdams
,
D. A.
, and
Linsey
,
J. S.
, “
An Experimental Investigation of Analogy Formation Using the Engineering-to-Biology Thesaurus
,”
ASME
Paper No. DETC2013-13160. 10.1115/DETC2013-13160
49.
Davies
,
M.
,
2010
, “
The Corpus of Contemporary American English as the First Reliable Monitor Corpus of English
,”
Lit. Linguist. Comput.
,
25
(
4
), pp.
447
464
.10.1093/llc/fqq018
50.
Arlitt
,
R.
,
Berthelsdorf
,
F.
,
Immel
,
S.
, and
Stone
,
R.
,
2014
, “
Using Human Computation to Assist Biologically Inspired Design: Evaluating a Game-With-a-Purpose
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Buffalo, NY, Aug. 17–20, ASME Paper No. DETC2014--34796.
51.
Design and Intelligence Laboratory
,
Georgia Institute of Technology
, “
Design by Analogy to Nature Engine (DANE)
,” http://dilab.cc.gatech.edu/dane/
52.
Forbus
,
K. D.
,
Gentner
,
D.
, and
Law
,
K.
,
1995
, “
MAC/FAC: A Model of Similarity-Based Retrieval
,”
Cognit. Sci.
,
19
(
2
), pp.
141
205
.10.1207/s15516709cog1902_1
You do not currently have access to this content.