Quality characteristics (QCs) are important product performance variables that determine customer satisfaction. Their expected values are optimized and their standard deviations are minimized during robust design (RD). Most of RD methodologies consider only a single QC, but a product is often judged by multiple QCs. It is a challenging task to handle dependent and oftentimes conflicting QCs. This work proposes a new robustness modeling measure that uses the maximum quality loss among multiple QCs for problems where the quality loss is the same no matter which QCs or how many QCs are defective. This treatment makes it easy to model RD with multivariate QCs as a single objective optimization problem and also account for the dependence between QCs. The new method is then applied to problems where bivariate QCs are involved. A numerical method for RD with bivariate QCs is developed based on the first order second moment (FOSM) method. The method is applied to the mechanism synthesis of a four-bar linkage and a piston engine design problem.

References

References
1.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. J.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.10.1115/1.2202880
2.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
Prentice-Hall
,
Upper Saddle River, NJ
.
3.
Mao
,
M.
, and
Danzart
,
M.
,
2008
, “
How to Select the Best Subset of Factors Maximizing the Quality of Multi-Response Optimization
,”
Qual. Eng.
,
20
(
1
), pp.
63
74
.10.1080/08982110701580948
4.
Pignatiello
,
J. J.
,
1993
, “
Strategies for Robust Multiresponse Quality Engineering
,”
IIE Trans.
,
25
(
3
), pp.
5
15
.10.1080/07408179308964286
5.
Govindaluri
,
S. M.
, and
Cho
,
B. R.
,
2007
, “
Robust Design Modeling With Correlated Quality Characteristics Using a Multicriteria Decision Framework
,”
Int. J. Adv. Manuf. Technol.
,
32
(
5–6
), pp.
423
433
.10.1007/s00170-005-0349-6
6.
Kovach
,
J.
,
Cho
,
B. R.
, and
Antony
,
J.
,
2009
, “
Development of a Variance Prioritized Multiresponse Robust Design Framework for Quality Improvement
,”
Int. J. Qual. Reliab. Manage.
,
26
(
4
), pp.
380
396
.10.1108/02656710910950360
7.
Wu
,
F. C.
, and
Chyu
,
C. C.
,
2004
, “
Optimization of Correlated Multiple Quality Characteristics Robust Design Using Principal Component Analysis
,”
J. Manuf. Syst.
,
23
(
2
), pp.
134
143
.10.1016/S0278-6125(05)00005-1
8.
Jeang
,
A.
,
Liang
,
F.
, and
Chung
,
C. P.
,
2008
, “
Robust Product Development for Multiple Quality Characteristics Using Computer Experiments and an Optimization Technique
,”
Int. J. Prod. Res.
,
46
(
12
), pp.
3415
3439
.10.1080/00207540601139963
9.
Wu
,
F. C.
, and
Chyu
,
C. C.
,
2004
, “
Optimization of Robust Design for Multiple Quality Characteristics
,”
Int. J. Prod. Res.
,
42
(
2
), pp.
337
354
.10.1080/0020754032000123605
10.
Du
,
X.
,
2012
, “
Robust Design Optimization With Bivariate Quality Characteristics
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
187
199
.10.1007/s00158-011-0753-5
11.
Awad
,
M. I.
, and
Kovach
,
J. V.
,
2011
, “
Multiresponse Optimization Using Multivariate Process Capability Index
,”
Qual. Reliab. Eng. Int.
,
27
(
4
), pp.
465
477
.10.1002/qre.1141
12.
Kovach
,
J.
, and
Cho
,
B. R.
,
2008
, “
Development of a Multidisciplinary-Multiresponse Robust Design Optimization Model
,”
Eng. Optim.
,
40
(
9
), pp.
805
819
.10.1080/03052150802046304
13.
Yadav
,
O. P.
,
Thambidorai
,
G.
,
Nepal
,
B.
, and
Monplaisir
,
L.
,
2014
, “
A Robust Framework for Multi-Response Surface Optimization Methodology
,”
Qual. Reliab. Eng. Int.
, 30, pp.
301
311
.10.1002/qre.1499
14.
Rangavajhala
,
S.
, and
Mahadevan
,
S.
,
2013
, “
Design Optimization for Robustness in Multiple Performance Functions
,”
Struct. Multidiscip. Optim.
,
47
(
4
), pp.
523
538
.10.1007/s00158-012-0860-y
15.
Kotz
,
S.
, and
Nadarajah
,
S.
,
2008
, “
Exact Distribution of the Max/Min of Two Gaussian Random Variables
,”
IEEE Trans. Very Large Scale Integr. VLSI Syst.
,
16
(
2
), pp.
210
212
.10.1109/TVLSI.2007.912191
16.
Huang
,
B.
, and
Du
,
X.
,
2007
, “
Analytical Robustness Assessment for Robust Design
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
123
137
.10.1007/s00158-006-0068-0
17.
Hurtado
,
J. E.
,
2004
,
Structural Reliability: Statistical Learning Perspectives
,
Springer
, Verlag Berlin Heidelberg New York.
18.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
.10.1115/1.4003539
19.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.10.1016/j.mechmachtheory.2008.10.003
20.
Zhang
,
J.
,
Wang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Probabilistic Synthesis for Function Generator Mechanisms
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1236
1250
.10.1016/j.mechmachtheory.2011.04.008
21.
Hoffman
,
R. M.
,
Sudjianto
,
A.
,
Du
,
X.
, and
Stout
,
J.
,
2003
, “
Robust Piston Design and Optimization Using Piston Secondary Motion Analysis
,” SAE Technical Paper No. 2003-01-0148.
22.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
.10.1115/1.1759358
You do not currently have access to this content.