Systems such as electronics, cars, computers, and robots are assembled from modular components for specific applications. Photovoltaic reverse osmosis (PVRO) systems, which can be custom-tailored for the water demands and solar properties of particular communities, are an important potential application of modular systems. Clearly, to be financially viable, such systems must be assembled from commercially available components and subsystems (modules). Designing a system from modular components for a specific application is not simple. Even for a relatively small inventory of modular components, the number of possible system configurations that exist is extremely large. For a small community, determining the best system configuration is an overwhelming task due to lack of expertise. This paper presents a modular design architecture that can be implemented on a laptop so nonexperts can configure systems from modular components. The method uses a hierarchy of filters, which can be provided from an expert system, to limit the large design space. Optimization methods and detailed models are then used to configure the location-specific system from the reduced design space. The method is applied here to community-scale PVRO systems and example cases demonstrate the effectiveness of the approach.

References

References
1.
World Health Organization and UNICEF
,
2006
, “
Meeting the MDG Drinking Water and Sanitation Targer—The Urban and Rural Challenge of the Decade
,” http://www.who.int/water_sanitation_health/monitoring/jmpfinal.pdf.
2.
Small
,
C.
, and
Nicholls
,
R. J.
,
2003
, “
A Global Analysis of Human Settlement in Coastal Zones
,”
J. Coastal Res.
,
18
(
3
), pp.
584
599
.
3.
Bilton
,
A. M.
,
2013
, “
A Modular Design Architecture for Application to Community-Scale Photovoltaic-Powered Reverse Osmosis Systems
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
4.
Tzen
,
E.
,
Perrakis
,
K.
, and
Baltas
,
P.
,
1998
, “
Design of a Stand Alone PV-Desalination System for Rural Areas
,”
Desalination
,
119
(
1–3
), pp.
327
333
.10.1016/S0011-9164(98)00177-5
5.
Thomson
,
M.
, and
Infield
,
D.
,
2003
, “
A Photovoltaic-Powered Seawater Reverse-Osmosis System Without Batteries
,”
Desalination
,
153
(
1–3
), pp.
1
8
.10.1016/S0011-9164(03)80004-8
6.
Herold
,
D.
, and
Neskakis
,
A.
,
2001
, “
A Small PV-Driven Reverse Osmosis Desalination Plant on the Island of Gran Canaria
,”
Desalination
,
137
(
1–3
), pp.
285
292
.10.1016/S0011-9164(01)00230-2
7.
Joyce
,
A.
,
Loureiro
,
D.
,
Rodrigues
,
C.
, and
Castro
,
S.
,
2001
, “
Small Reverse Osmosis Units Using PV Systems for Water Purification in Rural Places
,”
Desalination
,
137
(
1–3
), pp.
39
44
.10.1016/S0011-9164(01)00202-8
8.
Mohamed
,
E. S.
,
Papadakis
,
G.
,
Mathioulakis
,
E.
, and
Belessiotis
,
V.
,
2008
, “
A Direct Coupled Photovoltaic Seawater Reverse Osmosis Desalination System Toward Battery Based Systems—A Technical and Economical Experimental Comparative Study
,”
Desalination
,
221
(
1–3
), pp.
17
22
.10.1016/j.desal.2007.01.065
9.
Spectra Watermakers
,
2009
, “
SSW 3500 Datasheet
,” http://www.spectrawatermakers.com/documents/Solar_Cube.pdf.
10.
Voivontas
,
D.
,
Misirlis
,
K.
,
Manoli
,
E.
,
Arampatzis
,
G.
, and
Assimacopoulos
,
D.
,
2001
, “
A Tool for the Design of Desalination Plants Powered by Renewable Energies
,”
Desalination
,
133
(
2
), pp.
175
198
.10.1016/S0011-9164(01)00096-0
11.
Bourouni
,
K.
,
M'Barek
,
T. B.
, and
Al Taee
,
A.
,
2011
, “
Design and Optimization of Desalination Reverse Osmosis Plants Driven by Renewable Energies Using Genetic Algorithms
,”
Renewable Energy
,
36
(
3
), pp.
936
950
.10.1016/j.renene.2010.08.039
12.
M'Barek
,
T. B.
,
Bourouni
,
K.
, and
Mohamed
,
K. B. B.
,
2012
, “
Optimization Coupling RO Desalination Unit to Renewable Energy by Genetic Algorithms
,”
Desalin. Water Treat.
,
51
(
7–9
), pp.
1416
1428
.10.1080/19443994.2012.714855
13.
Bilton
,
A. M.
, and
Dubowsky
,
S.
,
2012
, “
The Modular Design of Photovoltaic Reverse Osmosis Systems—Making Technology Accessible to Non‐Experts
,”
Proceedings of the EuroMed 2012: Desalination for the Environment
,
Barcelona, Spain
, Apr. 22–26, pp.
702
712
.
14.
Kreng
,
V. B.
, and
Lee
,
T.
,
2004
, “
Modular Product Design With Grouping Genetic Algorithm—A Case Study
,”
Comput. Ind. Eng.
,
46
(
3
), pp.
443
460
.10.1016/j.cie.2004.01.007
15.
Yigit
,
A. S.
, and
Allahverdi
,
A.
,
2003
, “
Optimal Selection of Module Instances for Modular Products in Reconfigurable Manufacturing Systems
,”
Int. J. Prod. Res.
,
41
(
17
), pp.
4063
4074
.10.1080/0020754031000149220
16.
Gonzlez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2000
, “
Modular Platform-Based Product Family Design
,”
ASME
Paper No. DETC2000-14238.
17.
El-Halwagi
,
M. M.
,
1992
, “
Synthesis of Reverse-Osmosis Networks for Waste Reduction
,”
AIChE J.
,
38
(
8
), pp.
1185
1198
.10.1002/aic.690380806
18.
Voros
,
N.
,
Maroulis
,
Z. B.
, and
Marinos-Kouris
,
D.
,
1996
, “
Optimization of Reverse Osmosis Networks for Seawater Desalination
,”
Comput. Chem. Eng.
,
20
(
1
), pp.
345
350
.10.1016/0098-1354(96)00068-3
19.
Marcovecchio
,
M. G.
,
Aguirre
,
P. A.
, and
Scenna
,
N. J.
,
2005
, “
Global Optimal Design of Reverse Osmosis Networks for Seawater Desalination: Modeling and Algorithm
,”
Desalination
,
184
(
1–3
), pp.
259
271
.10.1016/j.desal.2005.03.056
20.
Saif
,
Y.
,
Elkamel
,
A.
, and
Pritzker
,
M.
,
2008
, “
Global Optimization of Reverse Osmosis Network for Wastewater Treatment and Minimization
,”
Ind. Eng. Chem. Res.
,
47
(
9
), pp.
3060
3070
.10.1021/ie071316j
21.
Maskan
,
F.
,
Wiley
,
D. E.
,
Johnston
,
L. P. M.
, and
Clements
,
D. J.
,
2000
, “
Optimal Design of Reverse Osmosis Module Networks
,”
AIChE J.
,
46
(
5
), pp.
946
954
.10.1002/aic.690460509
22.
Rutman
,
N.
,
1995
, “
Automated Design of Modular Field Robots
,” M.S. thesis, Masssachusetts Institute of Technology, Cambridge, MA
.
23.
Farritor
,
S.
,
Dubowsky
,
S.
,
Rutman
,
N.
, and
Cole
,
J.
,
1996
, “
A Systems-Level Modular Design Approach to Field Robotics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Minneapolis, MN, Apr. 22–28, pp.
2890
2895
.
24.
Leger
,
C.
,
1999
, “
Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
25.
Koza
,
J. R.
,
Forrest
,
H.
,
Bennett
,
I.
,
Andre
,
D.
, and
Keane
,
M. A.
,
1996
, “
Automated WYWIWYG Design of Both the Topology and Component Values of Electrical Circuits Using Genetic Programming
,”
Proceedings of the First Annual Conference on Genetic Programming
,
MIT Press, Stanford, CA
, Jul. 28–31, pp.
123
131
.
26.
Ochotta
,
E. S.
,
Rutenbar
,
R. A.
, and
Carley
,
L. R.
,
1996
, “
Synthesis of High-Performance Analog Circuits in ASTRX/OBLX
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
15
(
3
), pp.
273
294
.10.1109/43.489099
27.
Lohn
,
J. D.
, and
Colombano
,
S. P.
,
1999
, “
A Circuit Representation Technique for Automated Circuit Design
,”
IEEE Trans. Evol. Comput.
,
3
(
3
), pp.
205
219
.10.1109/4235.788491
28.
Lewin
,
D. R.
,
Wang
,
H.
, and
Shalev
,
O.
,
1998
, “
A Generalized Method for HEN Synthesis Using Stochastic Optimization—I. General Framework and MER Optimal Synthesis
,”
Comput. Chem. Eng.
,
22
(
10
), pp.
1503
1513
.10.1016/S0098-1354(98)00220-8
29.
Garrard
,
A.
, and
Fraga
,
E. S.
,
1998
, “
Mass Exchange Network Synthesis Using Genetic Algorithms
,”
Comput. Chem. Eng.
,
22
(
12
), pp.
1837
1850
.10.1016/S0098-1354(98)00252-X
30.
Gross
,
B.
, and
Roosen
,
P.
,
1998
, “
Total Process Optimization in Chemical Engineering With Evolutionary Algorithms
,”
Comput. Chem. Eng.
,
22
(
1
), pp.
229
236
.10.1016/S0098-1354(98)00059-3
31.
Jackson
,
P.
,
1998
,
Introduction to Expert Systems
,
Addison-Wesley Longman Publishing Co., Inc.
, Harlow, UK.
32.
National Aeronautics and Space Administration
,
2011
, “
Surface Meteorology and Solar Energy: A Renewable Energy Resource Web Site (Release 6.0)
,” Atmospheric Science and Data Center, ed., https://eosweb.larc.nasa.gov/sse/
33.
Greenlee
,
L. F.
,
Lawler
,
D. F.
,
Freeman
,
B. D.
,
Marrot
,
B.
, and
Moulin
,
P.
,
2009
, “
Reverse Osmosis Desalination: Water Sources, Technology, and Today's Challenges
,”
Water Res.
,
43
(
9
), pp.
2317
2348
.10.1016/j.watres.2009.03.010
34.
National Oceanographic Data Center (U.S.)
,
2005
, “
World Ocean Atlas 2005
,” U.S. Department of Commerce, National Oceanic and Atmospheric Administration.
35.
Hafez
,
A.
, and
El-Manharawy
,
S.
,
2003
, “
Economics of Seawater RO desalination in the Red Sea Region, Egypt. Part 1. A Case Study
,”
Desalination
,
153
(
1–3
), pp.
335
347
.10.1016/S0011-9164(02)01122-0
37.
Helal
,
A. M.
,
Al-Malek
,
S. A.
, and
Al-Katheeri
,
E. S.
,
2008
, “
Economic Feasibility of Alternative Designs of a PV-RO Desalination Unit for Remote Areas in the United Arab Emirates
,”
Desalination
,
221
(
1–3
), pp.
1
16
.10.1016/j.desal.2007.01.064
38.
Ettouney
,
H. M.
,
El-Dessouky
,
H. T.
,
Faibish
,
R. S.
, and
Gowin
,
P. J.
,
2002
, “
Evaluating the Economics of Desalination
,”
Chem. Eng. Prog.
,
12
, pp.
32
38
.
39.
World Health Organization
,
2011
,
Guidelines for Drinking-Water Quality
,
4th ed.
,
World Health Organization
, Geneva, Switzerland.
40.
Barbose
,
G.
,
2011
, “
Tracking the Sun III; The Installed Cost of Photovoltaics in the United States From 1998 to 2009
,” http://emp.lbl.gov/sites/all/files/REPORT%20lbnl-2674e.pdf.
You do not currently have access to this content.