Level-set approaches are a family of domain classification techniques that rely on defining a scalar level-set function (LSF), then carrying out the classification based on the value of the function relative to one or more thresholds. Most continuum topology optimization formulations are at heart, a classification problem of the design domain into structural materials and void. As such, level-set approaches are gaining acceptance and popularity in structural topology optimization. In conventional level set approaches, finding an optimum LSF involves solution of a Hamilton-Jacobi system of partial differential equations with a large number of degrees of freedom, which in turn, cannot be accomplished without gradients information of the objective being optimized. A new approach is proposed in this paper where design variables are defined as the values of the LSF at knot points, then a Kriging model is used sto interpolate the LSF values within the rest of the domain so that classification into material or void can be performed. Perceived advantages of the Kriging-interpolated level-set (KLS) approach include alleviating the need for gradients of objectives and constraints, while maintaining a reasonable number of design variables that is independent from the mesh size. A hybrid genetic algorithm (GA) is then used for solving the optimization problem(s). An example problem of a short cantilever is studied under various settings of the KLS parameters in order to infer the best practice recommendations for tuning the approach. Capabilities of the approach are then further demonstrated by exploring its performance on several test problems.

References

References
1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.10.1016/0045-7825(88)90086-2
2.
Rozvany
,
G.
,
2001
, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
90
108
.10.1007/s001580050174
3.
Saitou
,
K.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Papalambros
,
P.
,
2005
, “
A Survey on Structural Optimization in Product Development
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
214
226
.10.1115/1.2013290
4.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
, pp.
193
202
.10.1007/BF01650949
5.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.10.1007/s001580050176
6.
Deb
,
K.
, and
Gulati
,
S.
,
2001
, “
Design of Truss-Structures for Minimum Weight Using Genetic Algorithms
,”
Finite Elem. Anal. Des.
,
37
(
5
), pp.
447
465
.10.1016/S0168-874X(00)00057-3
7.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.10.1016/0045-7949(93)90035-C
8.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
, pp.
589
596
.10.1007/s00158-011-0638-7
9.
Yamasaki
,
S.
,
Nomura
,
T.
,
Kawamoto
,
A.
,
Sato
,
K.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2010
, “
A Level Set Based Topology Optimization Method Using the Discretized Signed Distance Function as the Design Variables
,”
Struct. Multidiscip. Optim.
,
41
(
5
), pp.
685
698
.10.1007/s00158-009-0453-6
10.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.10.1016/j.cma.2010.05.013
11.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W.
,
1994
,
Product Design for Manufacturing and Assembly
,
Marcel Dekker
,
New York
.
12.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
,
2003
, “
Topology Optimization With Implicit Functions and Regularization
,”
Int. J. Numer. Methods Eng.
,
57
(
8
), pp.
1177
1196
.10.1002/nme.824
13.
Allaire
,
G.
,
Jouve
,
F.
,
Toader
,
A. M.
,
2002
, “
A Level Set Method for Shape Optimization
,”
Acad. Sci., Paris, C. R.
,
334
, pp.
1125
1130
.10.1016/S1631-073X(02)02412-3
14.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using a Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
, pp.
363
393
.10.1016/j.jcp.2003.09.032
15.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
227
246
.10.1016/S0045-7825(02)00559-5
16.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Front Propagating With Curvature Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations
,”
J. Comput. Phys.
,
78
, pp.
12
49
.10.1016/0021-9991(88)90002-2
17.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
, pp.
2060
2090
.10.1002/nme.1536
18.
Luo
,
Z.
,
Tong
,
L.
, and
Kang
,
Z.
,
2009
, “
A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions
,”
Comput. Struct.
,
87
, pp.
425
434
.10.1016/j.compstruc.2009.01.008
19.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
, pp.
379
402
.10.1002/nme.2478
20.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
2876
2891
.10.1016/j.cma.2010.05.013
21.
Challis
,
V. J.
,
2010
, “
A Discrete Level-Set Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
41
, pp.
453
464
.10.1007/s00158-009-0430-0
22.
James
,
K. A.
, and
Martins
,
J. R.
,
2012
, “
An Isoparametric Approach to Level Set Topology Optimization Using a Body-Fitted Finite-Element Mesh
,”
Comput. Struct.
,
90–91
, pp.
97
106
.10.1016/j.compstruc.2011.10.004
23.
Sasena
,
M.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optimiz.
,
34
(
3
), pp.
263
278
.10.1080/03052150211751
24.
Simpson
,
T.
,
Booker
,
A.
,
Ghosh
,
D.
,
Giunta
,
A.
,
Koch
,
P.
, and
Yang
,
R.
,
2004
, “
Approximation Methods in Multidisciplinary Analysis and Optimization: A Panel Discussion
,”
Struct. Multidiscip. Optim.
,
27
, pp.
302
313
.10.1007/s00158-004-0389-9
25.
Viana
,
F.
,
Gogu
,
C.
, and
Haftka
,
R.
,
2010
, “
Making the Most Out of Surrogate Models: Tricks of the Trade
,”
Proceeding ASME
44090, Volume 1: 36th Design Automation Conference, Parts A and B 587 (January 1, 2010), IDETC/CIE 2010, August 15–18, 2010, Montreal, Quebec, Canada.10.1115/DETC2010-28813
26.
Michalewiz
,
Z.
, and
Fogel
,
D. B.
,
2000
,
How to Solve it: Modern Heuristics
,
Springer-Verlag
,
New York
.
27.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE transactions on evolutionary computation
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
28.
Gladwell
,
I.
,
Ferguson
,
W.
, and
Nagy
,
J. G.
,
2011
,
Introduction to Scientific Computing using MATLAB
,
Lulu Publishing
, Chap. 7, Raleigh, NC.
29.
Box
,
G.
,
Hunter
,
W.
, and
Hunter
,
J.
,
1978
,
Statistics for Experimenters
,
John Wiley & Sons
,
NY
.
30.
Yildiz
,
A.
, and
Saitou
,
K.
,
2011
, “
Topology Synthesis of Multi-Component Structural Assemblies in Continuum Domains
,”
ASME J. Mech. Des.
,
133
, p.
011008
.10.1115/1.4003038
31.
Hamza
,
K.
,
Aly
,
M.
,
Hegazi
,
H.
, and
Saitou
,
K.
,
2013
, “
Multi-Objective Topology Optimization of Multi-Component Continuum Structures Via an Explicit Level-Set Approach
,” 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, Paper No. 5172.
You do not currently have access to this content.