In engineering design, spending excessive amount of time on physical experiments or expensive simulations makes the design costly and lengthy. This issue exacerbates when the design problem has a large number of inputs, or of high dimension. High dimensional model representation (HDMR) is one powerful method in approximating high dimensional, expensive, black-box (HEB) problems. One existing HDMR implementation, random sampling HDMR (RS-HDMR), can build an HDMR model from random sample points with a linear combination of basis functions. The most critical issue in RS-HDMR is that calculating the coefficients for the basis functions includes integrals that are approximated by Monte Carlo summations, which are error prone with limited samples and especially with nonuniform sampling. In this paper, a new approach based on principal component analysis (PCA), called PCA-HDMR, is proposed for finding the coefficients that provide the best linear combination of the bases with minimum error and without using any integral. Several benchmark problems of different dimensionalities and one engineering problem are modeled using the method and the results are compared with RS-HDMR results. In all problems with both uniform and nonuniform sampling, PCA-HDMR built more accurate models than RS-HDMR for a given set of sample points.

References

References
1.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.10.1115/1.2429697
2.
Cresssie
,
N.
,
1988
, “
Spatial Prediction and Ordinary Kriging
,”
Math. Geol.
,
20
(
4
), pp.
405
421
.10.1007/BF00892986
3.
Fang
,
H.
, and
Horstemeyer
,
M. F.
,
2006
, “
Global Response Approximation With Radial Basis Functions
,”
J. Eng. Optim.
,
38
(
4
), pp.
407
424
.10.1080/03052150500422294
4.
Papadrakakis
,
M.
,
Lagaros
,
M.
, and
Tsompanakis
,
Y.
,
1998
, “
Structural Optimization Using Evolution Strategies and Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
156
(
1–4
), pp.
309
333
.10.1016/S0045-7825(97)00215-6
5.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regressive Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.10.1214/aos/1176347963
6.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Survey of Modeling and Optimization Strategies to Solve High Dimensional Design Problems With Computationally Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
219
241
.10.1007/s00158-009-0420-2
7.
Sobol
, I
. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.
8.
Rabitz
,
H.
, and
Alis
,
O. F.
,
1999
, “
General Foundation of High Dimensional Model Representation
,”
J. Math. Chem.
,
25
, pp.
197
233
.10.1023/A:1019188517934
9.
Li
,
G.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
,
2001
, “
High Dimensional Model Representations
,”
J. Phys. Chem.
,
105
(
33
), pp.
7765
7777
.10.1021/jp010450t
10.
Wang
,
H.
,
Tang
,
L.
, and
Li
,
G. Y.
,
2011
, “
Adaptive MLSHDMR Metamodeling Techniques for High Dimensional Problems
,”
Exp. Syst. Appl.
,
38
, pp.
14117
14126
.
11.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(5), pp.
1
11
.10.1115/1.4001597
12.
Shan
,
S.
, and
Wang
,
G. G.
,
2011
, “
Turning Black Box Into White Function
,”
ASME J. Mech. Des.
,
133
(
3
), p. 031003.10.1115/1.4002978
13.
Li
,
G.
,
Schoendorf
,
J.
,
Ho
,
T.
, and
Rabitz
,
H.
,
2004
, “
Multicut-HDMR With an Application to an Ionospheric Model
,”
J. Comput. Chem.
,
25
, pp.
1149
1156
.10.1002/jcc.20040
14.
Tunga
,
M. A.
, and
Demiralp
,
M.
,
2006
, “
Hybrid High Dimensional Model Representation (HHDMR) on the Partitioned Data
,”
J. Comput. Appl. Math.
,
185
, pp.
107
132
.10.1016/j.cam.2005.01.030
15.
Tunga
,
M. A.
, and
Demiralp
,
M.
,
2008
, “
Introductory Steps for an Indexing Based HDMR Algorithm: Lumping HDMR
,”
1st WSEAS International Conference on Multivariate Analysis and its Application in Science and Engineering, MAASE’08, May 27–30
,
Istanbul, Turkey
, pp.
129
135
.
16.
Tunga
,
M. A.
,
2011
, “
An Approximation Method to Model Multivariate Interpolation Problems: Indexing HDMR
,”
Math. Comput. Model.
,
53
, pp.
1970
1982
.10.1016/j.mcm.2011.01.027
17.
Li
,
G.
, and
Rabitz
,
H.
,
2007
, “
Regularized Random-Sampling High Dimensional Model Representation (RS-HDMR)
,”
J. Math. Chem.
,
43
(
3
), pp.
1207
1232
.10.1007/s10910-007-9250-x
18.
Thomas
,
P. S.
,
Somers
,
M. F.
,
Hoekstra
,
A. W.
, and
Kroes
,
G. J.
,
2012
, “
Chebyshev High-Dimensional Model Representation (Chebyshev-HDMR) Potentials: Application to Reactive Scattering of H2 from Pt(111) and Cu(111) Surfaces
,”
Phys. Chem. Chem. Phys.
,
14
, pp.
8628
8643
.10.1039/c2cp40173h
19.
Kaya
,
H.
,
Kaplan
,
M.
, and
Saygin
,
H.
,
2004
, “
A Recursive Algorithm for Finding HDMR Terms for Sensitivity Analysis
,”
Comput. Phys. Commun.
,
158
, pp.
106
112
.10.1016/j.comphy.2003.12.005
20.
Alis
,
O. F.
, and
Rabitz
,
H.
,
2001
, “
Efficient Implementation of High Dimensional Model Representations
,”
J. Math. Chem.
,
29
(
2
), pp.
127
142
.10.1023/A:1010979129659
21.
Hajikolaei
,
K. H.
, and
Wang
,
G. G.
,
2012
, “
Adaptive Orthonormal Basis Functions for High Dimensional Metamodeling With Existing Sample Points
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conference and Computers and Information in Engineering Conference, DETC2012-70480, Aug. 12–15
,
Chicago, IL
.
22.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdiscip. Rev. Comput. Stat.
,
2
(
4
), pp.
433
459
.10.1002/wics.101
23.
Li
,
G.
,
Wang
,
S. W.
,
Rabitz
,
H.
,
Wang
,
S.
, and
Jaffé
,
P.
,
2002
, “
Global Uncertainty Assessments by High Dimensional Model Representations (HDMR)
,”
Chem. Eng. Sci.
,
57
(
21
), pp.
4445
4460
.10.1016/S0009-2509(02)00417-7
24.
Li
,
G.
,
Wang
,
S. W.
, and
Rabitz
,
H.
,
2002
, “
Practical Approaches to Construct RS-HDMR Component Functions
,”
J. Phys. Chem.
,
106
, pp.
8721
8733
.10.1021/jp014567t
25.
Li
,
G.
,
Artamonov
,
M.
,
Rabitz
,
H.
,
Wang
,
S.
,
Georgopoulos
,
P. G.
, and
Demirlap
,
M.
,
2002
, “
High-Dimensional Model Representations Generated from Low Order Terms—lp-RS-HDMR
,”
J. Comput. Chem.
,
24
(
5
), pp.
647
656
.10.1002/jcc.10232
26.
Li
,
G.
,
Hu
,
J.
,
Wang
,
Sh.
,
Georgopoulos
,
P. G.
,
Schoendorf
,
J.
, and
Rabitz
,
H.
,
2006
, “
Random Sampling-High Dimensional Model Representation (RS-HDMR) and Orthogonality of its Different Order Component Functions
,”
J. Phys. Chem.
,
110
, pp.
2474
2485
.10.1021/jp054148m
27.
Li
,
G.
,
Rabitz
,
H.
,
Wang
,
S.
, and
Georgopoulos
,
P. G.
,
2002
, “
Correlation Method for Variance Reduction of Monte Carlo Integration in RS-HDMR
,”
J. Comput. Chem.
,
24
(
3
), pp.
277
283
.10.1002/jcc.10172
28.
Li
,
G.
, and
Rabitz
,
H.
,
2006
, “
Ratio Control Variate Method for Efficiently Determining High-Dimensional Model Representations
,”
J. Comput. Chem.
,
27
, pp.
1112
1118
.10.1002/jcc.20435
29.
Pearson
,
K.
,
1901
, “
On Lines and Planes of Closest Fit to Systems of Points in Space
,”
Philos. Mag.
,
6
, pp.
559
572
.
30.
Hotelling
,
H.
,
1933
, “
Analysis of a Complex of Statistical Variables Into Principal Components
,”
J. Educ. Psychol.
,
25
, pp.
417
441
.10.1037/h0071325
31.
Hock
,
W.
, and
Schittkowski
,
K.
,
1980
, “
Test Examples for Nonlinear Programming Codes
,”
J. Optim. Theory Appl.
,
30
(
1
), pp.
127
129
.10.1007/BF00934594
32.
Schittkowski
,
K.
,
1987
,
More Test Examples for Nonlinear Programming Codes
,
Springer-Verlag
,
New York
.
33.
Whitney
,
D. E.
,
2004
,
Mechanical Assemblies
,
Oxford University Press
,
New York
.
34.
3DCS Variation Analyst, 2013, Available at: www.3DCS.com
You do not currently have access to this content.