This paper presents a comparison of the criteria for updating the Kriging surrogate models in multi-objective optimization: expected improvement (EI), expected hypervolume improvement (EHVI), estimation (EST), and those in combination (EHVI + EST). EI has been conventionally used as the criterion considering the stochastic improvement of each objective function value individually, while EHVI has recently been proposed as the criterion considering the stochastic improvement of the front of nondominated solutions in multi-objective optimization. EST is the value of each objective function estimated nonstochastically by the Kriging model without considering its uncertainties. Numerical experiments were implemented in the welded beam design problem, and empirically showed that, in an unconstrained case, EHVI maintains a balance between accuracy, spread, and uniformity in nondominated solutions for Kriging-model-based multiobjective optimization. In addition, the present experiments suggested future investigation into techniques for handling constraints with uncertainties to enhance the capability of EHVI in constrained cases.

References

References
1.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York.
2.
Wang
,
G. G.
,
2003
, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
210
220
.10.1115/1.1561044
3.
Bishop
,
C. M.
,
1995
,
Neural Networks for Pattern Recognition
,
Oxford University
,
Oxford
.
4.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statist. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
5.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Function
,”
J. Global Optim.
,
13
, pp.
455
492
.10.1023/A:1008306431147
6.
Jeong
,
S.
,
Minemura
,
Y.
, and
Obayashi
,
S.
,
2006
, “
Optimization of Combustion Chamber for Diesel Engine Using Kriging Model
,”
J. Fluid Sci. Technol.
,
1
(
2
), pp.
138
146
.10.1299/jfst.1.138
7.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
,
2008
, “
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031401
.10.1115/1.2829879
8.
Li
,
M.
,
2011
, “
An Improved Kriging-Assisted Multi-Objective Genetic Algorithm
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071008
.10.1115/1.4004378
9.
Martin
,
J. D.
,
2009
, “
Computational Improvements to Estimating Kriging Metamodel Parameters
,”
ASME J. Mech. Des.
,
131
(
8
), p.
084501
.10.1115/1.3151807
10.
Shimoyama
,
K.
,
Lim
,
J. N.
,
Jeong
,
S.
,
Obayashi
,
S.
, and
Koishi
,
M.
,
2009
, “
Practical Implementation of Robust Design Assisted by Response Surface Approximation and Visual Data-Mining
,”
ASME J. Mech. Des.
,
131
(
6
), p.
0610071
.10.1115/1.3125207
11.
Hamel
,
J. M.
, and
Azarm
,
S.
,
2011
, “
Reducible Uncertain Interval Design by Kriging Metamodel Assisted Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011002
.10.1115/1.4002974
12.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.10.1115/1.2429697
13.
Łaniewski-Wołłk
,
Ł.
,
Obayashi
,
S.
, and
Jeong
,
S.
,
2010
, “
Development of Expected Improvement for Multi-Objective Problem
,”
Proceedings of 42nd Fluid Dynamics Conference/Aerospace Numerical Simulation Symposium 2010
.
14.
Emmerich
,
M. T. M.
,
Deutz
,
A. H.
, and
Klinkenberg
,
J. W.
,
2011
, “
Hypervolume-Based Expected Improvement: Monotonicity Properties and Exact Computation
,”
Proceedings of the 2011 IEEE Congress on Evolutionary Computation, IEEE Press
, pp.
2147
2154
.
15.
Zitzler
,
E.
, and
Thiele
,
L.
,
1998
, “
Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study
,”
Proceedings of the 5th International Conference on Parallel Problem Solving From Nature
,
Springer-Verlag
, pp.
292
301
.
16.
Beume
,
N.
,
Fonseca
,
C. M.
,
López-Ibáñez
,
M.
,
Paquete
,
L.
, and
Vahrenhold
,
J.
,
2009
, “
On the Complexity of Computing the Hypervolume Indicator
,”
IEEE Trans. Evol. Comput.
,
13
(
5
), pp.
1075
1082
.10.1109/TEVC.2009.2015575
17.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
18.
Sato
,
K.
,
Kumano
,
T.
,
Yonezawa
,
M.
,
Yamashita
,
H.
,
Jeong
,
S.
, and
Obayashi
,
S.
,
2008
, “
Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet
,”
J. Fluid Sci. Technol.
,
3
(
4
), pp.
576
585
.10.1299/jfst.3.576
19.
Shimoyama
,
K.
,
Yoshimizu
,
S.
,
Jeong
,
S.
,
Obayashi
,
S.
, and
Yokono
,
Y.
,
2011
, “
Multi-Objective Design Optimization for a Steam Turbine Stator Blade Using LES and GA
,”
J. Comput. Sci. Technol.
,
5
(
3
), pp.
134
147
.10.1299/jcst.5.134
20.
Van Veldhuizen
,
D. A.
, and
Lamont
,
G. B.
,
1998
, “Multiobjective Evolutionary Algorithm Research: A History and Analysis, Air Force Institute of Technology, Dayton, OH, Technical Report No. TR–98–03.
21.
Schott
,
J. R.
,
1998
, “
Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
22.
Zitzler
,
E.
,
1999
, “
Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications
,” Ph.D. thesis, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland.
23.
Van Veldhuizen
,
D. A.
,
1999
, “
Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations
,” Ph.D. thesis, Air Force Institute of Technology, Dayton, OH.
24.
While
,
L.
, and
Bradstreet
,
L.
,
2012
, “
Applying the WFG Algorithm to Calculate Incremental Hypervolumes
,”
Proceedings of the 2012 IEEE Congress on Evolutionary Computation, IEEE Press
, pp.
489
496
.
You do not currently have access to this content.