Most research papers that exploit conical springs focus only on conical springs with a constant pitch. In order to increase the range of possibilities for designers, this paper proposes a study of conical springs with other types of spirals projected on the conical shape. This study is related to three other types of conical springs: with a constant helix angle, with a constant stress at solid and with a fully linear load-length relation. For each spring, we give the equation of the spiral, the formula of the initial stiffness, and formulae to calculate the nonlinear part of the load-length relation for fully telescoping springs. We also report an experimental study performed to analyze the accuracy of the proposed study based on springs made by fused deposition modeling.

References

1.
Barents
,
R.
,
Schenk
,
M.
,
Van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
, p.
061010
.10.1115/1.4004101
2.
Kean Koay
,
L.
, and
Gitano-Briggs
,
H.
,
2011
, “
Design and Optimization of Mechanically Resonant Torsional Spring Mechanism for Laser Light Dispersion Applications
,”
ASME J. Mech. Des.
,
133
, p.
014504
.10.1115/1.4003143
3.
Park
,
J. J.
, and
Song
,
J. B.
,
2010
, “
A Nonlinear Stiffness Safe Joint Mechanism Design for Human Robot Interaction
,”
ASME J. Mech. Des.
,
132
, p.
061005
.10.1115/1.4001666
4.
Wahl
,
A. M.
,
1963
,
Mechanical Springs
,
McGraw-Hill Book Company
,
New York
.
5.
Spinella
,
I.
,
Dragoni
,
E.
, and
Stortiero
,
F.
,
2010
, “
Modeling, Prototyping, and Testing of Helical Shape Memory Compression Springs With Hollow Cross Section
,”
ASME J. Mech. Des.
,
132
, p.
061008
.10.1115/1.4001601
6.
Reza Mirzaeifar
,
R.
,
DesRoches
,
R.
, and
Yavari
,
A.
,
2011
, “
A Combined Analytical, Numerical, and Experimental Study of Shape-Memory-Alloy Helical Springs
,”
Comput. Struct.
,
48
, pp.
611
624
.10.1016/j.ijsolstr.2010.10.026
7.
Chiu
,
C. H.
,
Hwan
,
C. L.
,
Tsai
,
H. S.
, and
Lee
,
W. P.
,
2007
, “
An Experimental Investigation Into the Mechanical Behaviors of Helical Composite Springs
,”
Composite Structures
,
77
, pp.
331
340
.10.1016/j.compstruct.2005.07.022
8.
Zhang
,
G.
, and
Zhao
,
Y.
,
2004
, “
Mechanical Characteristics of Nanoscale Springs
,”
AIP J. Appl. Phys.
,
95
, pp.
267
271
.10.1063/1.1630699
9.
Shen
,
W.
, and
Fang
,
W.
,
2007
, “
Design of a Friction Clutch Using Dual Belleville Structures
,”
ASME J. Mech. Des.
,
128
, pp.
986
990
.10.1115/1.2748454
10.
Paredes
,
M.
, and
Daidie
,
A.
,
2010
, “
Optimal Catalogue Selection and Custom Design of Belleville Spring Arrangements
,”
Int. J. Interact Des. Manuf.
,
4
(
1
), pp.
51
59
.10.1007/s12008-009-0086-4
11.
Spaggiari
,
A.
, and
Dragoni
,
E.
,
2011
, “
Multiphysics Modeling and Design of Shape Memory Alloy Wave Springs as Linear Actuators
,”
ASME J. Mech. Des.
,
133
, p.
061008
.10.1115/1.4004196
12.
Vehar Jutte
,
C.
, and
Kota
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
, p.
081403
.10.1115/1.2936928
13.
Vehar Jutte
,
C.
, and
Kota
S.
,
2010
, “
Design of Single, Multiple, and Scaled Nonlinear Springs for Prescribed Nonlinear Responses
,”
ASME J. Mech. Des.
,
132
, p.
011003
.10.1115/1.4000595
14.
Dym
,
C.
,
2009
, “
Consistent Derivations of Spring Rates for Helical Springs
,”
ASME J. Mech. Des.
,
131
, p.
071004
.10.1115/1.3125888
15.
Pearson
,
D.
,
1982
, “
The Transfer Matrix Method for the Vibration of Compressed Helical Springs
,”
J. Mech. Eng. Sci.
,
24
, pp.
163
171
.10.1243/JMES_JOUR_1982_024_033_02
16.
Yildirim
,
V.
,
1999
, “
An Efficient Numerical Method for Predicting the Natural Frequencies of Cylindrical Helical Springs
,”
Int. J. Mech. Sci.
,
41
, pp.
919
939
.10.1016/S0020-7403(98)00065-4
17.
Busool
,
W.
, and
Eisenberger
,
M.
,
2002
, “
Free Vibration of Helicoidal Beams of Arbitrary Shape and Variable Cross Section
,”
ASME J. Vib. Acoust.
,
124
, pp.
397
409
.10.1115/1.1468870
18.
Yildirim
,
V.
,
2002
, “
Expressions for Predicting Fundamental Natural Frequencies of Non-Cylindrical Helical Springs
,”
ASME J. Sound Vib.
,
252
(
3
), pp.
479
491
.10.1006/jsvi.2001.4005
19.
Yildirim
,
V.
,
2004
, “
A Parametric Study on Natural Frequencies of Unidirectional Composite Conical Spring
,”
Commun. Numer. Methods Eng.
,
20
, pp.
207
227
.10.1002/cnm.661
20.
Vazquez-Gonzalez
,
B.
, and
Silva-Navarro
,
G.
,
2008
, “
Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System
,”
Shock Vib.
,
15
, pp.
355
368
.
21.
Wu
,
M. H.
, and
Hsu
,
W. Y.
,
1998
, “
Modelling the Static and Dynamic Behavior of a Conical Spring by Considering the Coil Close and Damping Effects
,”
ASME J. Sound Vib.
,
214
(
1
), pp.
17
28
.10.1006/jsvi.1997.1511
22.
Rodriguez
,
E.
,
Paredes
,
M.
, and
Sartor
,
M.
,
2006
, “
Analytical Behavior Law for a Constant Pitch Conical Compression Spring
,”
ASME J. Mech. Des.
,
129
, pp
1352
1356
.10.1115/1.2338580
23.
Paredes
,
M.
, and
Rodriguez
,
E.
,
2009
, “
Optimal Design of Conical Springs
,”
Eng. Comput.
,
25
(
2
), pp.
147
154
.10.1007/s00366-008-0112-3
24.
The Institute of Spring Technology
, UK, www.ist.org.uk/index.html
25.
Spring Manufacturers Institute, Inc.
,
2001
, Illinois, USA, www.smihq.org
You do not currently have access to this content.