If a part of a mechanism is restrained to rotate about a point not physically belonging to it, the mechanism is called a remote center-of-motion (RCM) mechanism. The RCM mechanisms are generally designed especially for robot-assisted minimally invasive surgery (MIS) systems, for which great progress has been made in recent years. An RCM mechanism type synthesis method is proposed in this paper by generalizing the intersection of motion planes. The existence of such motion planes is the fundamental feature of the classic Sarrus mechanism, for instance. The basic principle of the type synthesis method is to combine some typical planar mechanisms where their respective motion planes are free to tilt. Hence, the intersection line varies as the planes tilt. There is one invariant point on this intersection line, however, and this is the RCM point. The proposed method is used to design a class of spatial RCM mechanisms. And the kinematic characteristics of them are presented in this paper. In particular, several fully parallel two degree-of-freedom (DOF) RCM mechanisms and a 1-DOF RCM mechanism are considered in detail. Two spatial 3-DOF overconstrained RCM mechanisms are also obtained by the proposed method.

References

References
1.
Dai
,
J. S.
,
2010
, “
Editorial: Surgical Robotics and Its Development and Progress
,”
Special Issue on Surgical Robotics, System Development, Application Study and Performance Analysis, Robotica
,
28
, pp.
161
.
2.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
8
(
2
), pp.
127
145
.10.1002/rcs.453
3.
Nawrat
,
Z.
, and
Kostka
,
P.
,
2006
, “
Polish Cardio-Robot “RobIn Heart.” System, Description, and Technical Evaluation
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
2
, pp.
36
44
.10.1002/rcs.67
4.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2002
, “
The BlueDRAGON—A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
International Conference on Robotics and Automation
, Washington DC, May, pp.
1876
1881
.
5.
Taylor
,
R.
,
Jensen
,
P.
,
Whitcomb
,
L.
,
Barnes
,
A.
,
Kumar
,
R.
,
Stoianovici
,
D.
,
Gupta
,
P.
,
Wang
,
Z. X.
,
deJuan
,
E.
,
Kavoussi
,
L.
,
1999
, “
A Steady-Hand Robotic System for Microsurgical Augmentation
,”
Int. J. Robot. Res.
,
18
(
12
), pp.
1201
1210
.10.1177/02783649922067807
6.
Nowlin
,
W. C.
,
Guthart
,
G. S.
,
Salisbury
,
J. K.
, and
Niemeyer
,
G. D.
,
2006
, “
Repositioning and Reorientation of Master/Slave Relationship in Minimally Invasive Telesurgery
,” U.S. Patent No. US7087049B2.
7.
Zhou
,
N. X.
,
Zhu
,
Z. Y.
,
Chen
,
J. Z.
,
Liu
,
Q. D.
,
Zhang
,
T.
, and
Chen
,
Z. F.
,
2011
, “
Delayed Right Hemihepatectomy Followed by Right-Hepatic Vascular Control Both by da Vinci Robotic Surgery to a Patient of HilarCholangiocarcinoma With Deep Jaundice
,”
Rob. Surg.
,
1
, pp.
90
97
.
8.
Haber
,
G. P.
,
White
,
M. A.
,
Autorino
,
R.
,
Escobar
,
P. F.
,
Kroh
,
M. D.
,
Chalikonda
,
S.
,
Khanna
,
R.
,
Forest
,
S.
,
Yang
,
B.
,
Altunrende
,
F.
,
Stein
,
R. J.
,
Kaouk
,
J. H.
,
2010
, “
Novel Robotic da Vinci Instruments for Laparoendoscopic Single-Site Surgery
,”
Urology
,
76
(
6
), pp.
1279
1282
.10.1016/j.urology.2010.06.070
9.
Hanly
,
E. J.
, and
Talamini
,
M. A.
,
2004
, “
Robotic Abdominal Surgery
,”
Am. J. Surg.
,
188
, pp.
19S
26S
.10.1016/j.amjsurg.2004.08.020
10.
Zong
,
G. H.
,
Pei
,
X.
,
Yu
,
J. J.
, and
Bi
,
S. S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory
,
43
, pp.
1585
1595
.10.1016/j.mechmachtheory.2007.12.008
11.
Li
,
J. M.
,
Wang
,
S. X.
,
Wang
,
X. F.
, and
He
,
C.
,
2010
, “
Optimization of a Novel Mechanism for a Minimally Invasive Surgery Robot
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
6
, pp.
83
90
.10.1002/rcs.327
12.
Li
,
J. M.
,
Wang
,
S. X.
,
Wang
,
X. F.
,
He
,
C.
, and
Zhang
,
L. A.
,
2010
, “
Development of a Novel Mechanism for Minimally Invasive Surgery
,”
International Conference on Robotics and Biomimetics
, Tianjin, China, December, pp.
1370
1375
.
13.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2011
, “
Kinematics in Robotic Surgery
,”
Rob. Surg.
,
1
, pp.
62
71
.
14.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
,
111
(
2
), pp.
202
207
.10.1115/1.3258984
15.
Gogu.
,
G.
,
2012
,
Structural Synthesis of Parallel Robots, Part 4: Other Topologies With Two and Three Degrees of Freedom
,
Springer
,
New York.
16.
Karouia
,
M.
, and
Herve
,
J. M.
,
2000
, “
A Three-DOF Tripod for Generating Spherical Rotation
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
M. M.
Stanisic
, eds.,
Kluwer Academic Publishers
,
Netherlands
, pp.
395
402
.
17.
Mitsuishi
,
M.
,
Sugita
,
N.
,
Baba
,
S.
,
Takahashi
,
H.
,
Morita
,
A.
,
Sora
,
S.
, and
Mochizuki
,
R.
,
2008
, “
A Neurosurgical Robot for the Deep Surgical Field Characterized by an Offset-Type Forceps and Natural Input Capability
,”
39th International Symposium on Robotics
, Seoul, Korea, pp.
915
920
.
18.
Schena
,
B. M.
,
2008
, “
Mechanically Decoupled Capstan Drive
,” U.S. Patent No. US7391173 B2.
19.
Berkelman
,
P.
, and
Ma
,
J.
,
2006
, “
A Compact, Modular, Teleoperated Robotic Minimally Invasive Surgery System
,”
Proceedings of IEEE BioRob Conference
, Pisa, Italy, pp.
702
707
.
20.
Zhang
,
X. L.
, and
Nelson
,
C. A.
,
2008
, “
Kinematic Analysis and Optimization of a Novel Robot for Surgical Tool Manipulation
,”
ASME J. Med. Devices
,
2
(
2
), p.
021003
.10.1115/1.2918740
21.
Nabil
,
Z.
, and
Guillaume
,
M.
,
2007
, “
Mechatronic Design of a New Robot for Force Control in Minimally Invasive Surgery
,”
IEEE/ASME Trans. Mechatron.
,
2
(
2
), pp.
143
153
.
22.
Lum
,
M. J. H.
,
Friedman
,
D. C. W.
,
Sankaranarayanan
,
G.
,
King
,
H.
,
Fodero
,
K.
,
Leuschke
,
R.
,
Hannaford
,
B.
,
Rosen
,
J.
,
Sinanan
,
M. N.
,
2009
, “
The Raven: Design and Validation of a Telesurgery System
,”
Int. J. Robot. Res.
,
28
(
9
), pp.
1183
1197
.10.1177/0278364909101795
23.
Vischer
,
P.
, and
Clavel
,
R.
,
2000
, “
Argos: A Novel 3-DOF Parallel Wrist Mechanism
,”
Int. J. Robot. Res.
,
19
(
1
), pp.
5
11
.10.1177/02783640022066707
24.
Di
Gregorio
,
R.
,
2004
, “
The 3-RRS Wrist: A New, Simple and Non-Overconstrained Spherical Parallel Manipulator
,”
ASME J. Mech. Des.
,
126
, pp.
850
855
.10.1115/1.1767819
25.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2005
, “
Analytical Kinematics Models and Special Geometries of a Class of 4-DOF Parallel Mechanisms
,”
IEEE Trans. Rob. Autom.
,
21
(
6
), pp.
1046
1055
.10.1109/TRO.2005.853494
26.
Bennett
,
G. T.
,
1905
, “
The Parallel Motion of Sarrut and Some Allied Mechanisms
,”
Philos. Mag.
,
9
(
54
), pp.
803
810
.
27.
Zhang
,
K. T.
,
Dai
,
J. S.
,
Fang
,
Y. F.
, and
Zhu
,
Z. Q.
,
2010
, “
Topology and Constraint Analysis of Reconfiguration in Metamorphic Mechanisms
,”
Proceeding of the ASME 2010 International Design Engineering Technical Conference & Computers and Information in Engineering Conference
, Aug., Montreal, Canada, pp.
1689
1698
.
28.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
, p.
121001
.10.1115/1.4002691
29.
Müller
,
A.
, “On the Terminology and Geometric Aspects of Redundantly Actuated Parallel Manipulators,” Robotica (accepted).
30.
Müller
,
A.
, and
Rico
,
J. M.
,
2008
, “
Mobility and Higher Order Local Analysis of the Configuration Space of Single-Loop Mechanisms
,”
Advances in Robot Kinematics
,
J. J.
Lenarcic
and
P.
Wenger
, eds.,
Springer
,
New York
, pp.
215
224
.
You do not currently have access to this content.