Design under uncertainty needs to account for aleatory uncertainty, such as variability in material properties, and epistemic uncertainty including errors due to imperfect analysis tools. While there is a consensus that aleatory uncertainty be described by probability distributions, for epistemic uncertainty there is a tendency to be more conservative by taking worst case scenarios or 95th percentiles. This conservativeness may result in substantial performance penalties. Epistemic uncertainty, however, is usually reduced by additional knowledge typically provided by tests. Then, redesign may take place if tests show that the design is not acceptable. This paper proposes a reliability based design optimization (RBDO) method that takes into account the effects of future tests possibly followed by redesign. We consider each realization of epistemic uncertainty to correspond to a different design outcome. Then, the future scenario, i.e., test and redesign, of each possible design outcome is simulated. For an integrated thermal protection system (ITPS) design, we show that the proposed method reduces the mass penalty associated with a 95th percentile of the epistemic uncertainty from 2.7% to 1.2% compared to standard RBDO, which does not account for the future. We also show that the proposed approach allows trading off mass against development costs as measured by probability of needing redesign. Finally, we demonstrate that the tradeoff can be achieved even with the traditional safety factor based design.

References

References
1.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.10.1115/1.2829499
2.
Yao
,
W.
,
Chen
,
X. Q.
,
Luo
,
W. C.
,
Van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.10.1016/j.paerosci.2011.05.001
3.
Frangopol
,
D. M.
, and
Maute
,
K.
,
2003
, “
Life-Cycle Reliability-Based Optimization of Civil and Aerospace Structures
,”
Comput. Struct.
,
81
(
7
), pp.
397
410
.10.1016/S0045-7949(03)00020-8
4.
Hoffman
,
F. O.
, and
Hammonds
,
J. S.
,
1994
, “
Propagation of Uncertainty in Risk Assessments: The Need to Distinguish between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability
,”
Risk Anal.
,
14
(
5
), pp.
707
712
.10.1111/j.1539-6924.1994.tb00281.x
5.
Ferson
,
S.
,
Joslyn
,
C. A.
,
Helton
,
J. C.
,
Oberkampf
,
W. L.
, and
Sentz
,
K.
,
2004
, “
Summary From the Epistemic Uncertainty Workshop: Consensus Amid Diversity
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
355
369
.10.1016/j.ress.2004.03.023
6.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
Selecting Probabilistic Approaches for Reliability-Based Design Optimization
,”
AIAA J.
,
42
(
1
), pp.
124
131
.10.2514/1.9036
7.
Acar
,
E.
,
Haftka
,
R. T.
, and
Johnson
,
T. F.
,
2007
, “
Tradeoff of Uncertainty Reduction Mechanisms for Reducing Weight of Composite Laminates
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
266
274
.10.1115/1.2406097
8.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
9.
Gogu
,
C.
,
Qiu
,
Y.
,
Segonds
,
S.
, and
Bes
,
C.
,
2012
, “
Optimization Based Algorithms for Uncertainty Propagation Through Functions With Multidimensional Output Within Evidence Theory
,”
ASME J. Mech. Des.
,
134
(
10
),
p. 100914
.10.1115/1.4007393
10.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
,
2004
, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
386
394
.10.1115/1.1701878
11.
Du
,
L.
,
Choi
,
K. K.
,
Youn
,
B. D.
, and
Gorsich
,
D.
,
2006
, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
928
935
.10.1115/1.2204972
12.
Gu
,
X. Y.
,
Renaud
,
J. E.
, and
Penninger
,
C. L.
,
2006
, “
Implicit Uncertainty Propagation for Robust Collaborative Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
1001
1013
.10.1115/1.2205869
13.
Rangavajhala
,
S.
,
Liang
,
C.
, and
Mahadevan
,
S.
,
2012
, “
Design Optimization Under Aleatory and Epistemic Uncertainties
,”
14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis
, Indiana, Sept. 17–19.
14.
Noh
,
Y.
,
Choi
,
K. K.
,
Lee
,
I.
,
Gorsich
,
D.
, and
Lamb
,
D.
,
2011
, “
Reliability-Based Design Optimization With Confidence Level Under Input Model Uncertainty Due to Limited Test Data
,”
Struct. Multidisc. Optim.
,
43
(
4
), pp.
443
458
.10.1007/s00158-011-0620-4
15.
Urbina
,
A.
,
Mahadevan
,
S.
, and
Paez
,
T. L.
,
2011
, “
Quantification of Margins and Uncertainties of Complex Systems in the Presence of Aleatoric and Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1114
1125
.10.1016/j.ress.2010.08.010
16.
Acar
,
E.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2010
, “
Effects of Structural Tests on Aircraft Safety
,”
AIAA J.
,
48
(
10
), pp.
2235
2248
.10.2514/1.J050202
17.
An
,
J.
,
Acar
,
E.
,
Haftka
,
R. T.
,
Kim
,
N. H.
,
Ifju
,
P. G.
, and
Johnson
,
T. F.
,
2008
, “
Being Conservative With a Limited Number of Test Results
,”
J. Aircr.
,
45
(
6
), pp.
1969
1975
.10.2514/1.35551
18.
Villanueva
,
D.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2011
, “
Including the Effect of a Future Test and Redesign in Reliability Calculations
,”
AIAA J.
,
49
(
12
), pp.
2760
2769
.10.2514/1.J051150
19.
Matsumura
,
T.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2011
, “
Reliability Estimation Including Redesign Following Future Test for an Integrated Thermal Protection System
,”
9th World Congress on Structural and Multidisciplinary Optimization
, Shizuoka, Japan, June 14–17.
20.
Bapanapalli
,
S. K.
,
2007
, “
Design of an Integral Thermal Protection System for Future Space Vehicles
,” Ph.D. thesis, University of Florida, Gainesville.
21.
Varadhan
,
S. R. S.
,
2001
,
Probability Theory
,
Amer Mathmatical Society
, Providence, RI.
22.
Haldar
,
A.
,
And Mahadevan
,
S.
,
2000
,
Probability
,
Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York.
23.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
2004
,
Bayesian Data Analysis
,
Chapman and Hall
,
New York
.
24.
Martinez
,
O. A.
,
Sharma
,
A.
,
Sankar
,
B.
V
,
Haftka
,
R. T.
, and
Blosser
M. L.
,
2010
, “
Thermal Force and Moment Determination of an Integrated Thermal Protection System
,”
AIAA J.
,
48
(
1
), pp.
119
128
.10.2514/1.40678
25.
Gogu
,
C.
,
Bapanapalli
,
S. K.
,
Haftka
,
R. T.
, and
Sankar
,
B. V.
,
2009
, “
Comparison of Materials for an Integrated Thermal Protection System for Spacecraft Reentry
,”
J. Spacecr. Rockets
,
46
(
3
), pp.
501
513
.10.2514/1.35669
26.
Ayyub
,
B. M.
, and
Chia
,
C. Y.
,
1992
, “
Generalized Conditional-Expectation for Structural Reliability Assessment
,”
Struct. Saf.
,
11
(
2
), pp.
131
146
.10.1016/0167-4730(92)90005-8
27.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.10.1016/j.paerosci.2005.02.001
You do not currently have access to this content.