In sampling-based reliability-based design optimization (RBDO) of large-scale engineering applications, the Monte Carlo simulation (MCS) is often used for the probability of failure calculation and probabilistic sensitivity analysis using the prediction from the surrogate model for the performance function evaluations. When the number of samples used to construct the surrogate model is not enough, the prediction from the surrogate model becomes inaccurate and thus the Monte Carlo simulation results as well. Therefore, to count in the prediction error from the surrogate model and assure the obtained optimum design from sampling-based RBDO satisfies the probabilistic constraints, a conservative surrogate model, which is not overly conservative, needs to be developed. In this paper, a conservative surrogate model is constructed using the weighted Kriging variance where the weight is determined by the relative change in the corrected Akaike Information Criterion (AICc) of the dynamic Kriging model. The proposed conservative surrogate model performs better than the traditional Kriging prediction interval approach because it reduces fluctuation in the Kriging prediction bound and it performs better than the constant safety margin approach because it adaptively accounts large uncertainty of the surrogate model in the region where samples are sparse. Numerical examples show that using the proposed conservative surrogate model for sampling-based RBDO is necessary to have confidence that the optimum design satisfies the probabilistic constraints when the number of samples is limited, while it does not lead to overly conservative designs like the constant safety margin approach.

References

References
1.
Haldar
,
A.
, and
Mahadevan
,
S.
,
2000
,
Probability, Reliability and Statistical Methods in Engineering Design
,
John Wiley & Sons
,
New York
.
2.
Yi
,
K.
,
Choi
,
K. K.
,
Kim
,
N. H.
, and
Botkin
,
M. E.
,
2007
, “
Design Sensitivity Analysis and Optimization for Minimizing Springback of Sheet-Formed Part
,”
Int. J. Numer. Methods Eng.
,
71
, pp.
1483
1511
.10.1002/nme.1994
3.
Yu
,
X.
, and
Du
,
X.
,
2006
, “
Reliability-Based Multidisciplinary Optimization for Aircraft Wing Design
,”
Struct. Infrastruct. Eng.
,
2
(
3–4
), pp.
277
289
.10.1080/15732470600590333
4.
Lee
,
I.
,
Choi
,
K. K.
,
Noh.
,
Y.
,
Zhao.
,
L.
, and
Gorsich.
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(2), p.
021003
.10.1115/1.4003186
5.
Lee
,
I.
,
Choi
,
K. K.
, and
Zhao
,
L.
,
2011
, “
Sampling-Based RBDO Using the Dynamic Kriging (D-Kriging) Method and Stochastic Sensitivity Analysis
,”
J. Struct. Multidiscip. Optim.
,
44
(
3
), pp.
299
317
.10.1007/s00158-011-0659-2
6.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2008
,
Simulation and the Monte Carlo Method
,
Wiley-Interscience
,
New York
.
7.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem., Metall. Min. Eng. Soc. S Afr.
,
52
(
6
), pp.
119
139
.
8.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.10.2514/1.8650
9.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modeling: A Practical Guide
,
Wiley
,
Hoboken, NJ
.
10.
Chiles
,
J. P.
, and
Delfiner
,
P.
,
1999
,
Geostatistics: Modeling Spatial Uncertainty
,
Wiley
,
New York
.
11.
Suykens
,
J. A. K.
, and
Vandewalle
,
J.
,
1999
, “
Least Square Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.10.1023/A:1018628609742
12.
Smola
,
A. J.
, and
Scholkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.10.1023/B:STCO.0000035301.49549.88
13.
Xie
,
L.
,
Gu
,
N.
,
Li
,
D.
,
Cao
,
Z.
,
Tan
,
M.
, and
Nahavandi
,
S.
,
2013
, “
Concurrent Control Chart Patterns Recognition With Singular Spectrum Analysis and Support Vector Machine
,”
Comput. Ind. Eng.
,
64
(
1
), pp.
280
289
.10.1016/j.cie.2012.10.009
14.
Song
,
H.
,
Choi
,
K. K.
,
Lee
,
I.
,
Zhao
,
L.
, and
Lamb
,
D.
,
2011
, “
Adaptive Virtual Support Vector Machine for the Reliability Analysis of High-Dimensional Problems
,”
37th ASME Design Automation Conference
, Aug. 28–31,
Washington, DC
.
15.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2011
, “
Metamodeling Method Using Dynamic Kriging for Design Optimization
,”
AIAA J.
,
49
(
9
), pp.
2034
2046
.10.2514/1.J051017
16.
Zhao
,
L.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2009
, “
Response Surface Method Using Sequential Sampling for Reliability-Based Design Optimization
,”
Proceedings of the ASME IDETC/CIE 2009
, Aug. 30th–Sept 2nd, San Diego, Paper No. DETC2009-87084.
17.
Chan
,
K. Y.
,
Skerlos
,
S. J.
,
Papalambros
,
P.
,
2007
, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
,
129
(
2
), pp.
140
149
.10.1115/1.2337312
18.
Elishakoff
,
I.
,
2004
,
Safety Factors and Reliability: Friends or Foes?
Kluwer Academic
,
Norwell, MA
.
19.
Acar
,
E.
,
Kale
,
A.
, and
Haftka
,
R. T.
,
2007
, “
Comparing Effectiveness of Measures That Improve Aircraft Structural Safety
,”
J. Aerosp. Eng.
,
20
(
3
), pp.
186
199
.10.1061/(ASCE)0893-1321(2007)20:3(186)
20.
Picheny
,
V.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2008
, “
Conservative Predictions Using Surrogate Modeling,” 49th AIAA/ASME/ASCE/AHS/ASC Structures
, Structural Dynamics, and Materials, April 7–10, Schaumburg, IL.
21.
Picheny
,
V.
,
2009
, “
Improving Accuracy and Compensating for Uncertainty in Surrogate Modeling
,” Ph.D. dissertation, University of Florida, Gainesville, FL.
22.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2010
, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region
,”
ASME J. Mech. Des.
,
132
(7), p.
071008
.10.1115/1.4001873
23.
Hertog
,
D.
,
Kleijnen
,
J.
, and
Siem
,
A.
,
2006
, “
The Correct Kriging Variance Estimated by Bootstrapping
,”
J. Oper. Res. Soc.
,
57
, pp.
400
409
.10.1057/palgrave.jors.2601997
24.
Luna
,
S. D.
, and
Young
,
A.
,
2003
, “
The Bootstrap and Kriging Prediction Intervals
,”
Scand. J. Stat.
,
30
, pp.
175
192
.10.1111/1467-9469.00325
25.
Picheny
,
V.
,
Kim
,
N. H.
, and
Haftka
,
R. T.
,
2010
, “
Application of Bootstrap Method in Conservative Estimation of Reliability With Limited Samples
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
205
217
.10.1007/s00158-009-0419-8
26.
Viana
,
F. A. C.
, and
Haftka
,
R. T.
,
2009
, “
Cross Validation Can Estimate How Well Prediction Variance Correlates With Error
,”
AIAA J.
,
47
(
9
), pp.
2266
2270
.10.2514/1.42162
27.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.10.1007/s00158-008-0338-0
28.
Viana
,
F. A. C.
,
Picheny
,
V.
, and
Haftka
,
R. T.
,
2010
, “
Using Cross Validation to Design Conservative Surrogates
,”
AIAA J.
,
48
(
10
), pp.
2286
2298
.10.2514/1.J050327
29.
Xiong
,
F.
,
Chen
,
W.
,
Xiong
,
Y.
, and
Yang
,
S. X.
,
2011
, “
Weighted Stochastic Response Surface Method Considering Sample Weights
,”
J. Struct. Multidiscip. Optim.
,
44
, pp.
837
849
.10.1007/s00158-011-0621-3
30.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.10.1109/TAC.1974.1100705
31.
Hoeting
,
J. A.
,
Davis
,
R. A.
,
Merton
,
A. A.
, and
Thompson
,
S. E.
,
2006
, “
Model Selection for Geostatistical Models
,”
Ecol. Appl.
,
16
(
1
), pp.
87
98
.
32.
Hurvich
,
C. M.
, and
Tsai
,
C. L.
,
1989
, “
Regression and Time Series Model Selection in Small Samples
,”
Biometrika
,
76
, pp.
297
307
.10.1093/biomet/76.2.297
33.
McDonald
,
M.
, and
Mahadevan
,
S.
,
2008
, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021403
.10.1115/1.2813782
34.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
,
2010
, “
System Reliability-Based Design Optimization Using the MPP-Based Dimension Reduction Method
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
823
839
.10.1007/s00158-009-0459-0
35.
Burnham
,
K. P.
, and
Anderson
,
D. R.
,
2002
,
Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
,
Springer
,
New York
.
36.
Goel
,
T.
,
Haftka
,
R.
, and
Shyy
,
W.
,
2008
, “
Comparing Error Estimation Measures for Polynomial and Kriging Approximation of Noise-Free Functions
,”
Struct. Multidiscip. Optim.
,
38
(
5
), pp.
429
442
.10.1007/s00158-008-0290-z
37.
Xiong
,
F.
,
Xiong
,
Y.
,
Chen
,
W.
, and
Yang
,
S.
,
2009
, “
Optimizing Latin Hypercube Design for Sequential Sampling of Computer Experiments
,”
Eng. Optim.
,
41
(
8
), pp.
793
810
.10.1080/03052150902852999
38.
Guo
,
J.
, and
Du
,
X.
,
2009
, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
,
78
, pp.
1585
1617
.10.1002/nme.2543
You do not currently have access to this content.