This work presents a novel method for designing crashworthy structures with controlled energy absorption based on the use of compliant mechanisms. This method helps in introducing flexibility at desired locations within the structure, which in turn reduces the peak force at the expense of a reasonable increase in intrusion. For this purpose, the given design domain is divided into two subdomains: flexible (FSD) and stiff (SSD) subdomains. The design in the flexible subdomain is governed by the compliant mechanism synthesis approach for which output ports are defined at the interface between the two subdomains. These output ports aid in defining potential load paths and help the user make better use of a given design space. The design in the stiff subdomain is governed by the principle of a fully stressed design for which material is distributed to achieve uniform energy distribution within the design space. Together, FSD and SSD provide for a combination of flexibility and stiffness in the structure, which is desirable for most crash applications.

References

References
1.
Bois
,
P. D.
,
Chou
,
C. C.
,
Fileta
,
B. B.
,
Khalil
,
T. B.
,
King
,
A. I.
,
Mahmood
,
H. F.
,
Mertz
,
H. J.
, and
Wismans
,
J.
,
2004
, “
Vehicle Crashworthiness and Occupant Protection
,”
American Iron and Steel Institute
,
Southfield, Michigan
.
2.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M.
,
2005
, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
(
25–26
), pp.
2121
2136
.10.1016/j.compstruc.2005.02.025
3.
Fang
,
H.
,
Solanki
,
K.
, and
Horstemeyer
,
M. F.
,
2005
, “
Numerical Simulations of Multiple Vehicle Crashes and Multidisciplinary Crashworthiness Optimization
,”
Int. J. Crashworthiness
,
10
(
2
), pp.
161
172
.10.1533/ijcr.2005.0335
4.
Horstemeyer
,
M.
,
Ren
,
X.
,
Fang
,
H.
,
Acar
,
E.
, and
Wang
,
P.
,
2009
, “
A Comparative Study of Design Optimisation Methodologies for Side-Impact Crashworthiness, Using Injury-Based Versus Energy-Based Criterion
,”
Int. J. Crashworthiness
,
14
(
2
), pp.
125
138
.10.1080/13588260802539489
5.
Liao
,
X.
,
Li
,
Q.
,
Yang
,
X.-C.
,
Li
,
W.
, and
Zhang
,
W.
,
2008
, “
A Two-Stage Multi-Objective Optimisation of Vehicle Crashworthiness Under Frontal Impact
,”
Int. J. Crashworthiness
,
13
(
3
), pp.
279
288
.10.1080/13588260801933659
6.
Liao
,
X.
,
Li
,
Q.
,
Yang
,
X.
,
Zhang
,
W.
, and
Li
,
W.
,
2008
, “
Multiobjective Optimization for Crash Safety Design of Vehicles Using Stepwise Regression Model
,”
Struct. Multidiscip. Optim.
,
35
(
6
), pp.
561
569
.10.1007/s00158-007-0163-x
7.
Craig
,
K. J.
,
Stander
,
N.
,
Dooge
,
D. A.
, and
Varadappa
,
S.
,
2005
, “
Automotive Crashworthiness Design Using Response Surface-Based Variable Screening and Optimization
,”
Eng. Comput.
,
22
(
1
), pp.
38
61
.10.1108/02644400510572406
8.
Pan
,
F.
,
Zhu
,
P.
, and
Zhang
,
Y.
,
2010
, “
Metamodel-Based Lightweight Design of B-pillar With TWB Structure Via Support Vector Regression
,”
Comput. Struct.
,
88
(
1–2
), pp.
36
44
.10.1016/j.compstruc.2009.07.008
9.
Wang
,
H.
,
Li
,
G.
, and
Li
,
E.
,
2010
, “
Time-Based Metamodeling Technique for Vehicle Crashworthiness Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
37–40
), pp.
2497
2509
.10.1016/j.cma.2010.04.002
10.
Pedersen
,
C.
,
2003
, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
,
25
(
5–6
), pp.
368
382
.10.1007/s00158-003-0282-y
11.
Pedersen
,
C.
,
2004
, “
Crashworthiness Design of Transient Frame Structures Using Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
653
678
.10.1016/j.cma.2003.11.001
12.
Soto
,
C. A.
,
2004
, “
Structural Topology Optimization for Crashworthiness
,”
Int. J. Numer. Methods Eng.
,
9
(
3
), pp.
277
283
.
13.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
,
2006
, “
Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1205
1216
.10.1115/1.2336251
14.
Tovar
,
A.
,
Patel
,
N.
,
Kaushik
,
A.
, and
Renaud
,
J.
,
2007
, “
Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization
,”
AIAA J.
,
45
(
3
), pp.
673
683
.10.2514/1.20184
15.
Patel
,
N. M.
,
Kang
,
B.-S.
,
Renaud
,
J. E.
, and
Tovar
,
A.
,
2009
. “
Crashworthiness Design Using Topology Optimization
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061013
.10.1115/1.3116256
16.
Patel
,
N. M.
,
Penninger
,
C. L.
, and
Renaud
,
J. E.
,
2009
, “
Topology Synthesis of Extrusion-Based Nonlinear Transient Designs
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061003
.10.1115/1.3116255
17.
Guo
,
L.
,
Tovar
,
A.
,
Penninger
,
C.
, and
Renaud
,
J.
,
2011
, “
Strain-Based Topology Optimization for Crashworthiness Using Hybrid Cellular Automata
,”
Int. J. Crashworthiness
,
16
(
3
), pp.
239
252
.10.1080/13588265.2010.544892
18.
Mozumder
,
C.
,
Renaud
,
J.
, and
Tovar
,
A.
,
2012
, “
Topometry Optimization for Crashworthiness Design Using Hybrid Cellular Automata
,”
Int. J. Veh. Des.
,
60
(1–2), pp. 100–120.10.1504/IJVD.2012.049160
19.
Sullivan
,
T.
,
Calvi
,
G.
,
Priestley
,
M.
, and
Kowalsky
,
M.
,
2003
. “
The Limitations and Performances of Different Displacement Based Design Methods
,”
J. Earthquake Eng.
,
7
(
1
), pp.
201
241
.
20.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
,
16
(
1
), pp.
68
75
.10.1007/BF01214002
21.
Sigmund
,
O.
, and
Bendsøe
,
M. P.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin
.
22.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.10.1007/BF01650949
23.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.10.1007/s004190050248
24.
Pydimarry
,
K.
,
Mozumder
,
C. K.
,
Patel
,
N. M.
, and
Renaud
,
J. E.
,
2009
, “
Synthesis of a Dynamically Loaded Structure With Topology Optimization
,”
SAE Int J Passeng Cars Mech. Syst.
,
2
(
1
), pp.
1143
1150
.
25.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.10.1115/1.2826242
26.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimality Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
.10.1007/s001580050084
27.
Bandi
,
P.
,
Tovar
,
A.
, and
Renaud
,
J. E.
,
2011
, “
Design of 2D and 3D Non-Linear Compliant Mechanisms Using Hybrid Cellular Automata
,”
Proceedings of the 52nd AIAA Structures, Structural Dynamics, and Materials Conference
.
28.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.10.1115/1.2959094
29.
Rahmatalla
,
S.
, and
Swan
,
C. C.
,
2005
, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
19
(
1
), pp.
1579
1605
.10.1002/nme.1224
30.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4
), pp.
401
424
.10.1007/s00158-006-0087-x
You do not currently have access to this content.