Magnetorheological (MR) dampers have attracted the interest of suspension designers and researchers because of their variable damping feature, mechanical simplicity, robustness, low power consumption and fast response. This study deals with the optimal configuration of an MR damper using the Taguchi experimental design approach. The optimal solutions of the MR damper are evaluated for the maximum dynamic range and the maximum damper force separately. The MR dampers are constrained in a cylindrical container defined by radius and height. The optimal damper configurations obtained from this study are fabricated and tested for verification. The verification tests show that the dampers provide the specified damper force and dynamic range.

References

References
1.
Hitchcock
,
G. H.
,
2002
, “
A Novel Magneto–Rhelogical Fluid Damper
,”
Master thesis, Mechanical Engineering Department
,
Mechanical Engineering University of Nevada
, Reno, NV.
2.
Wereley
,
N. M.
, and
Pang
,
L.
,
1998
, “
Nondimensional Analysis of Semi–Active Electrorheological and Magnetorheological Dampers Using Approximate Parallel Plate Models
,”
Smart Mater. Struct.
,
7
(
5
), pp.
732
743
.10.1088/0964-1726/7/5/015
3.
Spencer
,
B. F.
, Jr.
,
Yang
,
G.
,
Carlson
,
J. D.
, and
Sain
,
M. K.
,
1998
, “
Smart Dampers for Seismic Protection of Structures: A Full-Scale Study
,”
Second World Conference on Structural Control
, Kyoto, pp.
417
426
.
4.
Jolly
,
M. R.
,
Bender
,
J. W.
,
And Carlson
,
J. D.
,
1999
, “
Properties and Applications of Commercial Magnetorheological Fluids
,”
J. Intell. Mater. Syst. Struct.
,
10
(
1
), pp.
5
13
.
5.
Rosenfeld
,
N. C.
, and
Wereley
,
N. M.
,
2004
, “
Volume-Constrained Optimization of Magnetorheological and Electrorheological Valves and Dampers
,”
Smart Mater. Struct.
,
13
(
6
), pp.
1303
1313
.10.1088/0964-1726/13/6/004
6.
Nguyen
,
Q. H.
, and
Choi
,
S. B.
,
2009
, “
Dynamic Modeling of an Electrorheological Damper Considering the Unsteady Behavior of Electrorheological Fluid Flow
,”
Smart Mater. Struct.
,
18
(
5
), p.
055016
.10.1088/0964-1726/18/5/055016
7.
Yang
,
L.
,
Duan
,
F.
, and
Eriksson
,
A.
,
2008
, “
Analysis of the Optimal Design Strategy of a Magnetorheological Smart Structure
,”
Smart Mater. Struct.
,
17
(
1
), p.
015047
.10.1088/0964-1726/17/1/015047
8.
Nguyen
,
Q. H.
,
Choi
,
S. B.
, and
Wereley
,
N. M.
,
2008
, “
Optimal Design of Magnetorheological Valves via a Finite Element Method Considering Control Energy and a Time Constant
,”
Smart Mater. Struct.
,
17
(
2
), p.
025024
.10.1088/0964-1726/17/2/025024
9.
Nguyen
,
Q. H.
,
Han
,
Y. M.
,
Choi
,
S. B.
, and
Wereley
,
N. M.
,
2007
, “
Geometry Optimization of MR Valves Constrained in a Specific Volume Using the Finite Element Method
,”
Smart Mater. Struct.
,
16
(
6
), p.
2242
.10.1088/0964-1726/16/6/027
10.
Stanway
,
R.
,
Sproston
,
J. L.
, and
El-Wahed
,
A. K.
,
1999
, “
Applications of Electro-Rheological Fluids in Vibration Control: A Survey
,”
Smart Mater. Struct.
,
5
(
4
), p.
464
.10.1088/0964-1726/5/4/011
11.
Namuduri
,
C. S.
,
Alexandridis
,
A. A.
,
Madak
,
J.
, and
Rule
,
D. S
,
2001
, “
Magnetorheological Fluid Damper With Multiple Annular Flow Gaps
,”
U.S. Patent
6
,
279
,701.
12.
Delivorias
,
R. P.
,
2004
, “
Application of ER and MR Fluid in an Automotive Crash Energy Absorber
,”
MT0418, Eindhoven University of Technology Department of Mechanical Engineering
, Eindhoven.
13.
Zhang
,
H. H.
,
Liao
,
C. R.
,
Chen
,
W. M.
,
Huang
,
S. L.
,
2006
, “
A Magnetic Design Method of MR Fluid Dampers and FEM Analysis on Magnetic Saturation
,”
J. Intell. Mater. Syst. Struct.
,
17
(
8–9
), pp.
813
818
.10.1177/1045389X06057537
14.
Nguyen
,
Q. H.
, and
Choi
,
S. B.
,
2009
, “
Optimal Design of MR Shock Absorber and Application to Vehicle Suspension
,”
Smart Mater. Struct.
,
18
(
3
), p.
035012
.10.1088/0964-1726/18/3/035012
15.
Karakoc
,
K.
,
Park
,
E. J.
, and
Suleman
,
A.
,
2008
, “
Design Considerations for an Automotive Magnetorheological Brake
,”
Mechatronics
,
18
(
8
), pp.
434
447
.10.1016/j.mechatronics.2008.02.003
16.
Grunwald
,
A.
, and
Olabi
,
A. G.
,
2008
, “
Design of Magneto-Rheological (MR) Valve
,”
Sens. Actuators, A
,
148
(
1
), pp.
211
223
.10.1016/j.sna.2008.07.028
17.
Tonoli
,
A.
,
Amati
,
N.
,
Bonfitto
,
A.
,
Silvagni
,
M.
,
Staples
,
B.
, and
Karpenko
,
E.
,
2010
, “
Design of Electromagnetic Dampers for Aero-Engine Applications
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
112501
.10.1115/1.4000801
18.
Case
,
D.
,
Taheri
,
B.
, and
Richer
,
E.
,
2011
, “
Finite Element Modeling and Analysis of Magnetorheological Dampers
,”
ASME 2011 International Mechanical Engineering Congress and Exposition
, Vol.
7
, Dynamic Systems and Control; Mechatronics and Intelligent Machines, Parts A and B.
19.
Gupta
,
S.
, and
Hirani
,
H.
,
2011
, “
Optimization of Magnetorheological Brake
,”
ASME/STLE 2011 International Joint Tribology Conference
, Los Angeles, California, October 24–26.
20.
Parlak
,
Z.
,
Engin
,
T.
,
Arı
,
V.
,
Şahin
,
İ.
, and
Çalli
,
İ.
,
2010
, “
Geometrical Optimisation of Vehicle Shock Dampers With Magnetorheological Fluid
,”
Int. J. Veh. Des.
,
54
(
4
), pp.
371
392
.10.1504/IJVD.2010.036842
21.
Lord Corporation
,
2003
, “
MR Fluid Product Bulletins
,” from http://www.rheonetic.com/fluidbegin.htm
22.
Roy
,
R. K.
,
2003
,
Design Experiments Using the Taguchi Aproach:16 Steps to Product and Process. Improvement
,
A Wiley–Interscience Publication
,
New York, NY
.
You do not currently have access to this content.