The objective of this paper is to introduce a computationally efficient and accurate approach for robust optimization under mixed (aleatory and epistemic) uncertainties using stochastic expansions that are based on nonintrusive polynomial chaos (NIPC) method. This approach utilizes stochastic response surfaces obtained with NIPC methods to approximate the objective function and the constraints in the optimization formulation. The objective function includes a weighted sum of the stochastic measures, which are minimized simultaneously to ensure the robustness of the final design to both inherent and epistemic uncertainties. The optimization approach is demonstrated on two model problems with mixed uncertainties: (1) the robust design optimization of a slider-crank mechanism and (2) robust design optimization of a beam. The stochastic expansions are created with two different NIPC methods, Point-Collocation and Quadrature-Based NIPC. The optimization results are compared to the results of another robust optimization technique that utilizes double-loop Monte Carlo sampling (MCS) for the propagation of mixed uncertainties. The optimum designs obtained with two different optimization approaches agree well in both model problems; however, the number of function evaluations required for the stochastic expansion based approach is much less than the number required by the Monte Carlo based approach, indicating the computational efficiency of the optimization technique introduced.

References

References
1.
Taguchi
,
G.
,
Chowdhury
,
S.
, and
Taguchi
,
S.
,
2000
,
Robust Engineering
,
McGraw Hill
,
New York
.
2.
Taguchi
,
G.
,
1993
,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME Press
,
New York
.
3.
Oberkampf
,
W. L.
,
Helton
,
J. C.
, and
Sentz
,
K.
, April,
2001
, “
Mathematical Representation of Uncertainty
,” 3rd Non-Deterministic Approaches Forum, AIAA-Paper No. 2001-1645.
4.
Swiler
,
L.
,
Paez
,
T.
,
Mayes
,
R.
, and
Eldred
,
M.
,
2009
, “
Epistemic Uncertainty in the Calculation of Margins
,”
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, May 4–7, AIAA-Paper No. 2009-2249.
5.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
,
2004
, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
.10.1016/j.ress.2004.03.025
6.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.10.1016/j.mechmachtheory.2008.10.003
7.
Eldred
,
M. S.
,
Swiler
,
L. P.
, and
Tang
,
G.
,
2011
, “
Mixed Aleatory-Epistemic Uncertainty Quantification With Stochastic Expansions and Optimization-Based Interval Estimation
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1092
1113
.10.1016/j.ress.2010.11.010
8.
Hosder
,
S.
, and
Bettis
,
B.
,
2012
, “
Uncertainty and Sensitivity Analysis for Reentry Flows With Inherent and Model-Form Uncertainties
,”
J. Spacecr. Rockets
,
49
(
2
), pp.
193
206
.10.2514/1.A32102
9.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.10.1016/j.cma.2007.03.003
10.
Eldred
,
M. S.
,
2011
, “
Design Under Uncertainty Employing Stochastic Expansion Methods
,”
Int. J. Uncertainty Quantification
,
1
(
2
), pp.
119
146
.10.1615/IntJUncertaintyQuantification.v1.i2.20
11.
Dodson
,
M.
, and
Parks
,
G. T.
,
2009
, “
Robust Aerodynamic Design Optimization Using Polynomial Chaos
,”
J. Aircr.
,
46
(
2
), pp.
635
646
.10.2514/1.39419
12.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2010
, “
Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics
,”
AIAA J.
,
48
(
12
), pp.
2721
2730
.10.2514/1.39389
13.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
14.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2003
, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos
,”
J. Comput. Phys.
,
187
(
1
), pp.
137
167
. Available at http://dl.acm.org/citation.cfm?id=795469
15.
Eldred
,
M. S.
,
Webster
,
C. G.
, and
Constantine
,
P. G.
, April,
2008
, “
Evaluation of Non-Intrusive Approaches for Wiener-Askey Generalized Polynomial Chaos
,”
10th AIAA Non-Deterministic Approaches Forum
, AIAA-Paper No. 2008-1892.
16.
Walters
,
R. W.
, and
Huyse
,
L.
,
2002
, “
Uncertainty Analysis for Fluid Mechanics With Applications
,” Technical Report No. ICASE 2002-1, NASA/CR-2002-211449, NASA Langley Research Center, Hampton, VA.
17.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
35
52
.10.1146/annurev.fluid.010908.165248
18.
Hosder
,
S.
, and
Walters
,
R. W.
,
2010
, “
Non-Intrusive Polynomial Chaos Methods for Uncertainty Quantification in Fluid Dynamics
,”
48th AIAA Aerospace Sciences Meeting
, Jan. 4–7, AIAA-Paper No. 2010-0129.
19.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Input Uncertain Variables
,”
9th AIAA Non-Deterministic Approaches Conference
, AIAA-Paper No. 2007-1939.
20.
West
,
T. K.
, IV
,
Hosder
,
S.
, and
Johnston
,
C. O.
,
2013
, “
A Multi-Step Uncertainty Quantification Approach Applied to Hypersonic Reentry Flows
,”
51st AIAA Aerospace Sciences Meeting and Exhibit
, Jan. 7–10, AIAA-Paper No.2013-0257.
21.
Vanderplaats
,
G. N.
,
1999
,
Numerical Optimization Techniques For Engineering Design
,
3rd ed.
,
Vanderplaats Research and Development
,
Colorado Springs, CO
.
You do not currently have access to this content.