For problems involving uncertainties in design variables and parameters, a bi-objective evolutionary algorithm (EA) based approach to design optimization using evidence theory is proposed and implemented in this paper. In addition to a functional objective, a plausibility measure of failure of constraint satisfaction is minimized. Despite some interests in classical optimization literature, this is the first attempt to use evidence theory with an EA. Due to EA's flexibility in modifying its operators, nonrequirement of any gradient, its ability to handle multiple conflicting objectives, and ease of parallelization, evidence-based design optimization using an EA is promising. Results on a test problem and two engineering design problems show that the modified evolutionary multi-objective optimization algorithm is capable of finding a widely distributed trade-off frontier showing different optimal solutions corresponding to different levels of plausibility failure limits. Furthermore, a single-objective evidence-based EA is found to produce better optimal solutions than a previously reported classical optimization algorithm. Furthermore, the use of a graphical processing unit (GPU) based parallel computing platform demonstrates EA's performance enhancement around 160–700 times in implementing plausibility computations. Handling uncertainties of different types are getting increasingly popular in applied optimization studies and this EA based study is promising to be applied in real-world design optimization problems.

References

References
1.
Cruse
,
T. R.
,
1997
,
Reliability-Based Mechanical Design
,
Marcel Dekker
,
New York
.
2.
Deb
,
K.
,
Gupta
,
S.
,
Daum
,
D.
,
Branke
,
J.
,
Mall
,
A.
, and
Padmanabhan
,
D.
,
2009
, “
Reliability-Based Optimization Using Evolutionary Algorithms
,”
IEEE Trans. Evol. Comput.
,
13
(
5
), pp.
1054
1074
.10.1109/TEVC.2009.2014361
3.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.10.1115/1.1649968
4.
Ditlevsen
,
O.
, and
Bjerager
,
P.
,
1989
, “
Plastic Reliability Analysis by Directional Simulation
,”
ASCE J. Eng. Mech.
,
115
(
6
), pp.
1347
1362
.10.1061/(ASCE)0733-9399(1989)115:6(1347)
5.
Gu
,
L.
, and
Yang
,
R.
,
2006
, “
On Reliability-Based Optimisation Methods for Automotive Structures
,”
Int. J. Mater. Prod. Technol.
,
25
(
1/2/3
), pp.
3
26
.
6.
Salazar
,
D. E.
, and
Rocco
,
C. M.
,
2007
, “
Solving Advanced Multi-Objective Robust Designs by Means of Multiple Objective Evolutionary Algorithms (MOEA): A Reliability Application
,”
Reliab. Eng. Syst. Saf.
,
92
(
6
), pp.
697
706
.10.1016/j.ress.2006.03.003
7.
Daum
,
D.
,
Deb
,
K.
, and
Branke
,
J.
,
2007
, “
Reliability-Based Optimization for Multiple Constraint With Evolutionary Algorithms
,”
Congress on Evolutionary Computation, IEEE
, pp.
911
918
.
8.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
,
2006
, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
,
128
, pp.
909
918
.
9.
Li
,
M.
,
Gabriel
,
S. A.
,
Shim
,
Y.
, and
Azarm
,
S.
,
2011
, “
Interval Uncertainty-Based Robust Optimization for Convex and Non-Convex Quadratic Programs With Applications in Network Infrastructure Planning
,”
Netw. Spatial Econ.
,
11
(
1
), pp.
159
191
.10.1007/s11067-010-9150-7
10.
Soyster
,
A. L.
,
1973
, “
Convex Programming With Set-Inclusive Constraints and Applications to Inexact Linear Programming
,”
Oper. Res.
, pp.
1154
1157
.10.1287/opre.21.5.1154
11.
Majumder
,
L.
, and
Rao
,
S. S.
,
2009
, “
Interval-Basedoptimization of Aircraft Wings Under Landing Loads
,”
Comput. Struct.
,
87
(
3–4
), pp.
225
235
.10.1016/j.compstruc.2008.10.005
12.
Du
,
X.
,
2012
, “
Reliability-Based Design Optimization With Dependent Interval Variables
,”
Int. J. Numer. Methods Eng.
,
91
, pp.
218
228
.10.1002/nme.4275
13.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2006
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
, pp.
901
908
.10.1115/1.2204970
14.
Rao
,
S. S.
,
2008
, “
Evidence-Based Fuzzy Approach for the Safety Analysis of Uncertain Systems
,”
AIAA J.
,
46
, pp.
2383
2387
.10.2514/1.35715
15.
Srivastava
,
R.
, and
Deb
,
K.
,
2011
, “
An EA-Based Approach to Design Optimization Using Evidence Theory
,”
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, ACM
, pp.
1139
1146
.
16.
Srivastava
,
R.
, and
Deb
,
K.
,
2010
, “
Bayesian Reliability Analysis Under Incomplete Information Using Evolutionary Algorithms
,”
Simulated Evolution and Learning
,
Vol. 6457 of Lecture Notes in Computer Science, Springer
,
Berlin/Heidelberg
, pp.
435
444
.
17.
Srivastava
,
R.
, and
Deb
,
K.
,
2012
, “
An Evolutionary Based Bayesian Design Optimization Approach Under Incomplete Information
,”
Eng. Optim.
,
45
, pp.
141
165
.10.1080/0305215X.2012.661730
18.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.10.1016/j.cma.2007.03.003
19.
Jin
,
Y.
, and
Sendhoff
,
B.
,
2003
, “
Trade-Off Between Performance and Robustness: An Evolutionary Multiobjective Approach
,” Evolutionary Multi-Criterion Optimization, Springer, Paper No. LNCS 2632, pp.
237
251
.
20.
Gaspar-Cunha
,
A.
, and
Covas
,
J. A.
,
2008
, “
Robustness in Multi-Objective Optimization Using Evolutionary Algorithms
,”
Comput. Optim. Appl.
,
39
, pp.
75
96
.10.1007/s10589-007-9053-9
21.
Lagaros
,
N.
,
Plevris
, V
.
, and
Papadrakakis
,
M.
,
2005
, “
Multi-Objective Design Optimization Using Cascade Evolutionary Computation
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
3496
3515
.10.1016/j.cma.2004.12.029
22.
Zhang
,
J.
,
Wiecek
,
M.
, and
Chen
,
W.
,
2000
, “
Local Approximation of the Efficient Frontier in Robust Design
,”
ASME J. Mech. Des.
,
122
(
2
), pp.
232
236
.10.1115/1.533571
23.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
,
2002
, “
Robust Optimization—Methodology and Applications
,”
Math. Program.
,
92
, pp.
453
480
.10.1007/s101070100286
24.
Bertsimas
,
D.
, and
Sim
,
M.
,
2004
, “
The Price of Robustness
,”
Oper. Res.
,
52
, pp.
35
53
.10.1287/opre.1030.0065
25.
Lucas
,
C.
, and
Araabi
,
B. N.
,
1999
, “
Generalization of the Dempster-Shafer Theory: A Fuzzy-Valued Measure
,”
IEEE Trans. Fuzzy Syst.
,
7
, pp.
255
270
.10.1109/91.771083
26.
Dempster
,
P.
,
1967
, “
Upper and Lower Probabilities Induced by a Multi-Valued Mapping
,”
Ann. Math. Stat.
,
38
(
2
), pp.
325
339
.10.1214/aoms/1177698950
27.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
28.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2006
, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
901
908
.10.1115/1.2204970
29.
Dellnitz
,
M.
,
Schütze
,
O.
, and
Sertl
,
S.
,
2002
, “
Finding Zeros by Multilevel Subdivision Techniques
,”
IMA J. Numer. Anal.
,
22
(
2
), pp.
167
185
.10.1093/imanum/22.2.167
30.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
,
2000
, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
,
90
, pp.
145
159
.10.1016/S0378-3758(00)00105-1
31.
Byrd
,
R. H.
,
Nocedal
,
J.
, and
Waltz
,
R. A.
,
2006
, “
Knitro: An Integrated Package for Nonlinear Optimization
,”
Large Scale Nonlinear Optimization
,
Springer-Verlag
,
New York
, pp.
35
59
.
32.
Zou
,
T.
,
Mourelatos
,
Z. P.
,
Mahadevan
,
S.
, and
Tu
,
J.
,
2008
, “
An Indicator Response Surface Method for Simulation-Based Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
7
), p.
071401
.10.1115/1.2918901
33.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
34.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester, UK
.
35.
Deb
,
K.
, and
Agrawal
,
R. B.
,
1995
, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
,
9
(
2
), pp.
115
148
.
36.
Keeney
,
R. L.
, and
Raiffa
,
H.
,
1976
,
Decisions With Multiple Objectives: Preferences and Value Tradeoffs
,
Wiley
,
New York
.
37.
Deb
,
K.
, and
Gupta
,
S.
,
2011
, “
Understanding Knee Points in Bicriteria Problems and Their Implications as Preferred Solution Principles
,”
Eng. Optim.
,
43
(
11
), pp.
1175
1204
.10.1080/0305215X.2010.548863
38.
Wu
,
Y. T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
,
2001
, “
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Paper No. AIAA-2001-1522.
39.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
,
2008
, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Int. J. Prod. Dev.
,
5
, pp.
76
92
.10.1504/IJPD.2008.016371
40.
Lewis
,
K.
, and
Mistree
,
F.
,
1998
, “
Collaborative, Sequential, and Isolated Decisions in Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
643
652
.10.1115/1.2829327
41.
Cantú-Paz
,
E.
,
1998
, “
A Survey of Parallel Genetic Algorithms
,”
Calculateurs Paralleles Reseaux Et Systems Repartis
,
10
, pp.
141
171
.
42.
NVIDIA
,
2008
, Nvidia Compute Unified Device Architecture C Programming Guide 3.2, http://developer.nvidia.com/cuda-toolkit-32-downloads
43.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.10.1109/4235.797969
You do not currently have access to this content.