The combined approximations (CA) method is an effective reanalysis approach providing high quality results. The CA method is suitable for a wide range of structural optimization problems including linear reanalysis, nonlinear reanalysis and eigenvalue reanalysis. However, with increasing complexity and scale of engineering problems, the efficiency of the CA method might not be guaranteed. A major bottleneck of the CA is how to obtain reduced basis vectors efficiently. Therefore, a modified CA method, based on approximation of the inverse matrix, is suggested. Based on the symmetric successive over-relaxation (SSOR) and compressed sparse row (CSR), the efficiency of CA method is shown to be much improved and corresponding storage space markedly reduced. In order to further improve the efficiency, the suggested strategy is implemented on a graphic processing unit (GPU) platform. To verify the performance of the suggested method, several case studies are undertaken. Compared with the popular serial CA method, the results demonstrate that the suggested GPU-based CA method is an order of magnitude faster for the same level of accuracy.

References

1.
Kirsch
,
U.
,
2000
, “
Combined Approximations—A General Reanalysis Approach for Structural Optimization
,”
Struct. Optim.
,
20
, pp.
97
106
.10.1007/s001580050141
2.
Kirsch
,
U.
, and
Papalambros
,
P. Y.
,
2001
, “
Exact and Accurate Solutions in the Approximate Reanalysis of Structures
,”
AIAA J.
,
39
, pp.
2198
2205
.10.2514/2.1219
3.
Kirsch
,
U.
,
1999
, “
Efficient-Accurate Reanalysis for Structural Optimization
,”
AIAA J.
,
37
, pp.
1663
1669
.10.2514/2.649
4.
Kirsch
,
U.
,
1991
, “
Reduced Basis Approximations of Structural Displacements for Optimal Design
,”
AIAA J.
,
29
, pp.
1751
1758
10.2514/3.10799
5.
Kirsch
,
U.
,
1993
,
Structural Optimizations, Fundamentals and Applications
,
Springer
,
Berlin, Heidelberg, New York
.
6.
Kirsch
,
U.
,
1993
, “
Approximate Reanalysis for Topological Optimization
,”
Struct. Optim.
,
6
, pp.
143
150
.10.1007/BF01743505
7.
Leu
,
L.-J.
, and
Huang
,
C.-W.
,
1998
, “
A Reduced Basis Method for Geometric Nonlinear Analysis of Structures
,”
IASS J.
,
39
, pp.
71
75
.
8.
Aktas
,
A.
, and
Moses
,
F.
,
1998
, “
Reduced Basis Eigenvalue Solutions or Damaged Structures
,”
Mech. Struct. Mach.
,
26
, pp.
63
79
.10.1080/08905459808945420
9.
Chen
,
S. H.
, and
Yang
,
X. W.
,
2000
, “
Extended Kirsch Combined Method for Eigenvalue Reanalysis
,”
AIAA J.
,
38
, pp.
927
930
.10.2514/2.1049
10.
Chen
,
S. H.
, and
Yang
,
Z. J.
,
2004
, “
A Universal Method for Structural Static Reanalysis of Topological Modifications
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
673
686
.10.1002/nme.1084
11.
Kirsch
,
U.
, and
Bogomolni
,
M.
,
2004
, “
Procedures for Approximate Eigenproblem Reanalysis of Structures
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
1969
198
.10.1002/nme.1032
12.
Kirsch
,
U.
,
Bogomolni
,
M.
, and
Sheinman
,
I.
,
2007
, “
Efficient Dynamic Reanalysis of Structures
,”
ASCE J. Struct. Eng.
,
133
, pp.
440
448
.10.1061/(ASCE)0733-9445(2007)133:3(440)
13.
Kirsch
,
U.
,
Bogomolni
,
M.
, and
Sheinman
,
I.
,
2006
, “
Nonlinear Dynamic Reanalysis for Structural Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
4420
4432
.10.1016/j.cma.2005.09.013
14.
Kirsch
,
U.
,
2008
,
Reanalysis of Structures
,
Springer
,
Dordrecht
.
15.
Kirsch
,
U.
,
2010
, “
Reanalysis and Sensitivity Reanalysis by Combined Approximations
,”
Struct. Multidiscip. Optim.
,
40
, pp.
1
15
.10.1007/s00158-009-0369-1
16.
Raz
,
R.
,
2003
, “
On the Complexity of Matrix Product
,”
SIAM J. Comput.
,
32
(
5
), pp.
1356
1369
.10.1137/S0097539702402147
17.
Unterkircher
,
A.
, and
Reissner
,
J.
,
2005
, “
Parallel Assembling and Equation Solving via Graph Algorithms With an Application to the FE Simulation of Metal Extrusion Processes
,”
Comput. Struct.
,
83
(
8–9
), pp.
627
638
.10.1016/j.compstruc.2004.10.012
18.
Farhat
,
C.
,
Crivelli
,
L.
, and
Roux
,
F. X.
,
1994
, “
A Transient FETI Methodology for Large-Scale Parallel Implicit Computations in Structural Mechanics
,”
37
(
11
), pp.
1945
1975
.
19.
Komatitsch
,
D.
,
Micha
,
D.
, and
Erlebacher
,
G.
,
2009
, “
Porting a High-Order Finite-Element Earthquake Modeling Application to NVIDIA Graphics Cards Using CUDA
,”
J. Parallel Distrib. Comput.
,
69
(
5
), pp.
451
460
.10.1016/j.jpdc.2009.01.006
20.
Owens
,
J. D.
,
Houston
,
M.
,
Luebke
,
D.
,
Green
,
S.
,
Stone
,
J. E.
, and
Phillips
,
J. C.
,
2008
, “
GPU Computing
,”
Proc. IEEE
,
5
, pp.
879
899
.10.1109/JPROC.2008.917757
21.
Cecka
,
C.
,
Lew
,
A. J.
, and
Darve
,
E.
,
2011
, “
Assembly of Finite Element Methods on Graphic Processors
,”
Int. J. Numer. Methods Eng.
,
85
, pp.
640
669
.10.1002/nme.2989
22.
Cai
,
Y.
,
Li
,
G.
,
Wang
,
H.
,
Zheng
,
G.
, and
Lin
,
S.
,
2012
, “
Development of Parallel Explicit Finite Element Sheet Forming Simulation System Based on GPU Architecture
,”
Adv. Eng. Software
,
45
(
1
), pp.
370
379
.10.1016/j.advengsoft.2011.10.014
23.
Joldes
,
G. R.
,
Wittek
,
A.
, and
Miller
,
K.
,
2010
, “
Real-Time Nonlinear Finite Element Computations on GPU—Application to Neurosurgical Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3305
3314
.10.1016/j.cma.2010.06.037
24.
Krakiwsky
,
S. E.
,
Turner
,
L. E.
, and
Okoniewski
,
M. M.
,
2004
, “
Acceleration of Finite-Difference Time-Domain (FDTD) Using Graphics Processor Units(GPU)
,”
Proceedings of the IEEE MTT-S International Microwave Symposium
, pp.
1033
1036
.
25.
Inman
,
M. J.
, and
Elsherbeni
,
A. Z.
,
2005
, “
Programming Video Cards for Computational Electromagnetics Applications
,”
IEEE Antennas Propag. Mag.
,
47
, pp.
71
78
.10.1109/MAP.2005.1608730
27.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computations
, 3rd ed.,
The Johns Hopkins University Press
,
Baltimore
.
28.
Chen
,
R. S.
,
Yung
,
E. K. N.
,
Chan
,
C. H.
, and
Fang
,
D. G.
, “
Application of SSOR Preconditioned Conjugate Gradient Algorithm to Edge-FEM for 3-Dimensional Full Wave Electromagnetic Boundary Value Problems
,”
IEEE Trans. Microwave Theory Tech.
,
50
(
4
), pp.
1165
1172
.10.1109/22.993420
30.
Fletcher
,
R.
, and
Reeves
,
C. M.
,
1964
, “
Function Minimization by Conjugate Gradients
,”
Comput. J.
,
7
, pp.
149
154
.10.1093/comjnl/7.2.149
31.
Langou
,
J.
,
Luszczek
,
P.
,
Kurzak
,
J.
,
Buttari
,
A.
, and
Dongarra
,
J.
,
2006
, “
Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems)
,”
Proceedings of the ACM/IEEE Super Computing
.
32.
Bell
,
N.
, and
Garland
,
M.
,
2008
, “
Efficient Sparse Matrix–Vector Multiplication on CUDA
,” Technical Report No. NVR-2008-04, NVIDIA.
33.
Adams
,
M. F.
,
2000
, “
Parallel Multigrid Solvers for 3D Unstructured Finite Element Problems in Large Deformation Elasticity and Plasticity
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
1241
62
.10.1002/(SICI)1097-0207(20000720)48:8<1241::AID-NME946>3.0.CO;2-R
You do not currently have access to this content.