Reconfigurable robotic systems can enhance productivity and save costs in the ever growing flexible manufacturing regime. In this work, the idea to synthesize robotic mechanisms with dynamic properties that are reconfigurable is studied, and a methodology to design reconfigurable mechanisms with this property is proposed, named reconfigurable dynamics (Re-Dyn). The resulting designs have not only the kinematic properties reconfigurable, such as link lengths, but also properties that directly affect the forces and accelerations, such as masses and inertias. A 2-degree of freedom (DOF) parallel robot is used as a test subject. It is analyzed and redesigned with Re-Dyn. This work also presents the robots forward dynamic model in detail, which includes the force balancing mediums. The connection method is directly utilized for this derivation, which is well suited for multibody dynamics and provides insight for design parameters (DPs). Dynamic performance indices are also briefly discussed as related to the Re-Dyn method. After redesigning the robot, a full simulation is conducted to compare performances related to a flexible manufacturing situation. This illustrates the advantages of the proposed method.

References

References
1.
Li
,
Y.
,
Wang
,
J.
,
Liu
,
X.-J.
, and
Wang
,
L.-P.
,
2010
, “
Dynamic Performance Comparison and Counterweight Optimization of Two 3-DOF Parallel Manipulators for a New Hybrid Machine Tool
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1668
1680
.10.1016/j.mechmachtheory.2010.06.009
2.
Miller
,
K.
,
2004
, “
Optimal Design and Modeling of Spatial Parallel Manipulators
.”
Int. J. Rob. Res.
,
23
(
2
), pp.
127
140
.10.1177/0278364904041322
3.
Sugimoto
,
K.
,
1987
, “
Kinematic and Dynamic Analysis of Parallel Manipulators by Means of Motor Algebra
,”
J. Mech., Transm., Autom. Des.
,
109
(
1
), pp.
3
7
.10.1115/1.3258783
4.
Lee
,
K. M.
, and
Shah
,
D. K.
,
1988
, “
Dynamic Analysis of a Three-Degrees-of-Freedom in-Parallel Actuated Manipulator
,”
IEEE J. Rob. Autom.
,
4
(
3
), pp.
361
367
.10.1109/56.797
5.
Wu
,
J.
,
Wang
,
J.
,
Li
,
T.
,
Wang
,
L.
, and
Guan
,
L.
,
2008
, “
Dynamic Dexterity of a Planar 2-DOF Parallel Manipulator in a Hybrid Machine Tool
,”
Robotica
,
26
(
1
), pp.
93
98
.10.1017/S0263574707003621
6.
Kane
,
T.
, and
Levinson
,
D.
,
1985
,
Dynamics, Theory and Applications
,
McGraw-Hill
,
New York
.
7.
Huang
,
Q.
,
Haadeby
,
H.
, and
Sohlenius
,
G.
,
2002
, “
Connection Method for Dynamic Modelling and Simulation of Parallel Kinematic Mechanism (PKM) Machines
,”
Int. J. Adv. Manuf. Technol.
,
19
, pp.
163
173
.10.1007/s001700200010
8.
Qi
,
H.
,
Liwen
,
G.
,
Jinsong
,
W.
, and
Liping
,
W.
,
2010
, “
GA-Based Dynamic Manipulability Optimization of a 2-DOF
Planar Parallel Manipulator,” 2010
IEEE Conference on Robotics Automation and Mechatronics (RAM)
, pp.
46
51
.10.1109/RAMECH.2010.5513214
9.
Zhao
,
Y.
, and
Gao
,
F.
,
2009
, “
Dynamic Formulation and Performance Evaluation of the Redundant Parallel Manipulator
,”
Rob. Comput.-Integr. Manufact.
,
25
, pp.
770
781
.10.1016/j.rcim.2008.10.001
10.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
1998
, “
A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1135
1152
.10.1016/S0094-114X(97)00118-3
11.
Zhang
,
C.-D.
, and
Song
,
S.-M.
,
1993
, “
An Efficient Method for Inverse Dynamics of Manipulators Based on the Virtual Work Principle
,”
J. Rob. Syst.
,
10
(
5
), pp.
605
627
.10.1002/rob.4620100505
12.
Tadokoro
,
S.
,
Kimura
,
I.
, and
Takamori
,
T.
,
1991
, “
A Measure for Evaluation of Dynamic Dexterity Based on a Stochastic Interpretation of Manipulator Motion
,”
Fifth International Conference on Advanced Robotics, 1991, Robots in Unstructured Environments, 91 ICAR
, Vol. 1, pp.
509
514
.
13.
Gregorio
,
R. D.
, and
Parenti-Castelli
,
V.
,
2005
, “
On the Characterization of the Dynamic Performances of Planar Manipulators
,”
Meccanica
,
40
, pp.
267
279
.10.1007/s11012-005-5456-9
14.
Wang
,
L. P.
,
Wang
,
J. S.
, and
Chen
,
J.
,
2005
, “
The Dynamic Analysis of a 2-PRR Planar Parallel Mechanism
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
219
(
9
), pp.
901
909
.10.1243/095440605X31832
15.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3-DOF Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
4
), pp.
835
849
.10.1016/j.mechmachtheory.2008.04.002
16.
Jiang
,
Q.
, and
Gosselin
,
C. M.
,
2010
, “
Dynamic Optimization of Reactionless Four-Bar Linkages
,”
ASME, J. Dyn. Syst., Meas., Control
,
132
(
4
), p.
041006
.10.1115/1.4001337
17.
Gosselin
,
C. M.
,
Vollmer
,
F.
,
Cote
,
G.
, and
Wu
,
Y.
,
2004
, “
Synthesis and Design of Reactionless Three-Degree-of-Freedom Parallel Mechanisms
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
191
199
.10.1109/TRA.2004.824696
18.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
J. Mech. Rob.
,
1
(
3
), p.
031005
.10.1115/1.3147192
19.
Briot
,
S.
,
Bonev
,
I. A.
,
Gosselin
,
C. M.
, and
Arakelian
,
V.
,
2009
, “
Complete Shaking Force and Shaking Moment Balancing of Planar Parallel Manipulators With Prismatic Pairs
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
223
(
1
), pp.
43
52
.10.1243/14644193JMBD161
20.
Alici
,
G.
, and
Shirinzadeh
,
B.
,
2004
, “
Optimum Dynamic Balancing of Planar Parallel Manipulators
,”
IEEE International Conference on Proceedings of Robotics and Automation, ICRA’04
, Vol. 5, IEEE, pp.
4527
4532
.
21.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2006
, “
On the Design of Reactionless 3-DOF Planar Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
70
82
.10.1016/j.mechmachtheory.2005.04.005
22.
Wu
,
Y.
, and
Gosselin
,
C.
,
2005
, “
Design of Reactionless 3-DOF and 6-DOF Parallel Manipulators Using Parallelepiped Mechanisms
,”
IEEE Trans. Rob.
,
21
(
5
), pp.
821
833
.10.1109/TRO.2005.847573
23.
Van der Wijk
,
V.
, and
Herder
,
J. L.
,
2009
, “
Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced Double Pendula
,”
ASME, J. Mech. Des.
,
131
(
11
), p.
111003
.10.1115/1.3179150
24.
Lee
,
T. W.
, and
Cheng
,
C.
,
1984
, “
Optimum Balancing of Combined Shaking Force, Shaking Moment, and Torque Fluctuations in High-Speed Linkages
,”
ASME J. Mech., Transm. Autom. Des.
,
106
, pp.
242
251
.10.1115/1.3258586
25.
Ouyang
,
P. R.
, and
Zhang
,
W. J.
,
2005
, “
Force Balancing of Robotic Mechanisms Based on Adjustment of Kinematic Parameters
,”
ASME, J. Mech. Des.
,
127
(
3
), pp.
433
440
.10.1115/1.1864116
26.
Hong
,
B.
, and
Erdman
,
A. G.
,
2005
, “
A Method for Adjustable Planar and Spherical Four-Bar Linkage Synthesis
,”
ASME, J. Mech. Des.
,
127
(
3
), pp.
456
463
.10.1115/1.1867501
27.
Park
,
J. H.
, and
Asada
,
H.
,
1994
, “
Concurrent Design Optimization of Mechanical Structure and Control for High Speed Robots
,”
ASME, J. Dyn. Syst., Meas., Control
,
116
(
3
), pp.
344
356
.10.1115/1.2899229
28.
Pil
,
A. C.
, and
Asada
,
H. H.
,
1996
, “
Integrated Structure/Control Design of Mechatronic Systems Using a Recursive Experimental Optimization Method
,”
IEEE/ASME Trans. Mechatron.
,
1
(
3
), pp.
191
203
.10.1109/3516.537042
29.
Li
,
Q.
,
Zhang
,
W. J.
, and
Chen
,
L.
,
2001
, “
Design for Control-A Concurrent Engineering Approach for Mechatronic Systems Design
,”
IEEE/ASME Trans. Mechatron.
,
6
(
2
), pp.
161
169
.10.1109/3516.928731
30.
Li
,
Q.
, and
Wu
,
F. X.
,
2004
, “
Control Performance Improvement of a Parallel Robot Via the Design for Control Approach
,”
Mechatronics
,
14
(
8
), pp.
947
964
.10.1016/j.mechatronics.2004.04.002
31.
Ouyang
,
P. R.
,
Li
,
Q.
, and
Zhang
,
W. J.
,
2003
, “
Integrated Design of Robotic Mechanisms for Force Balancing and Trajectory Tracking
,”
Mechatronics
,
13
(
8–9
), pp.
887
905
.10.1016/S0957-4158(03)00007-2
32.
McGovern
,
J.
, and
Sandor
,
G. N.
,
1973
, “
Kinematic Synthesis of Adjustable Mechanisms, Part 1: Function Generation
,”
ASME Mechanisms Conference
, pp.
417
422
.
33.
McGovern
,
J.
, and
Sandor
,
G. N.
,
1973
, “
Kinematic Synthesis of Adjustable Mechanisms, Part 2: Path Generation
,”
ASME Mechanisms Conference
, pp.
423
429
.
34.
Chuenchom
,
T.
, and
Kota
,
S.
,
1994
, “
Analytical Synthesis of Adjustable Dyads and Triads for Designing Adjustable Mechanisms
,”
Proceedings of the ASME Design Technical Conference
, Vol. 70, pp.
467
477
.
35.
Bi
,
Z.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput.-Integr. Manufact.
,
25
(
6
), pp.
951
961
.10.1016/j.rcim.2009.04.004
36.
Peng
,
C.
,
2010
, “
Optimal Synthesis of Planar Adjustable Mechanisms
,” Ph.D. thesis, New Jersey Institute of Technology, Newark, NJ.
37.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME, J. Mech. Des.
,
128
(
1
), pp.
220
229
.10.1115/1.1901708
38.
Coppola
,
G.
,
Zhang
,
D.
,
Liu
,
K.
, and
Gao
,
Z.
,
2012
, “
Dynamic Performance With Control of a 2-DOF Parallel Robot
,” ASME IDETC/CIE.
39.
Gosselin
,
C.
,
1988
, “
Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators
,” Ph.D. thesis, McGill University, Montreal, Québec.
40.
Suh
,
N. P.
,
2001
,
Axiomatic Design: Advances and Applications (The Oxford Series on Advanced Manufacturing)
,
Oxford University Press
, New York, NY.
You do not currently have access to this content.