Engineering design reconciles design constraints with decision maker (DM) preferences. The task of eliciting and encoding decision maker preferences is, however, extremely difficult. A Pareto front representing the locus of the nondominated designs is, therefore, often generated to help a decision maker select the best design. In this paper, we show that this method has a shortcoming when there is uncertainty in both the decision problem variables and in the model of decision maker's preferences. In this case, the Pareto front is inconsistent with multi-attribute utility (MAU) theory, unless the decision maker trades off attributes or some functions of them linearly. This is a strong restriction. To account for this, we propose a methodology that enables a decision maker to select the best design on a modified pareto front (MPF) which is acquired using envelopes of a set of certainty equivalent (CE) surfaces. The proposed method does not require separability of the multi-attribute utility function into single-attribute utilities, nor does it require the decision maker to trade the attributes (or any function of them) linearly. We demonstrate our approach on a simple optimization problem and in design of a reduction gear.

References

References
1.
Howard
,
R.
,
1988
, “
Decision Analysis: Practice and Promise
,”
Manage. Sci.
,
34
(
6
), pp.
679
695
.10.1287/mnsc.34.6.679
2.
Saaty
,
T. L.
,
1990
,
Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting Resource Allocation
,
2nd ed.
,
RWS Publications
,
Pittsburgh, PA
.
3.
Savage
,
L. G.
,
1954
,
The Foundations of Statistics
,
John Wiley & Sons
,
New York
.
4.
von Neumann
,
J.
, and
Morgenstern
,
O.
,
1947
,
Theory of Games and Economic Behavior
,
Princeton
,
Princeton, NJ
.
5.
Thurston
,
D. L.
,
1991
, “
A Formal Method for Subjective Design Evaluation With Multiple Attributes
,”
Res. Eng. Des.
,
3
(
2
), pp.
105
122
.10.1007/BF01581343
6.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.10.1115/1.2829328
7.
Gurnani
,
A.
, and
Lewis
,
K.
,
2005
, “
Robust Multiattribute Decision Making Under Risk and Uncertainty in Engineering Design
,”
Eng. Optimiz.
,
37
(
8
), pp.
813
830
.10.1080/03052150500340520
8.
Scott
,
M. J.
, and
Antonsson
,
E. K.
,
1998
Aggregation Functions for Engineering Design Trade-Offs
,”
Fuzzy Sets Syst.
,
99
(
3
), pp.
253
264
.10.1016/S0165-0114(97)00032-8
9.
Lewis
,
K.
,
Chen
,
W.
, and
Schmidt
,
L. C.
, eds.,
2006
,
Decision Making in Engineering Design
,
ASME Press
,
New York
.
10.
Hula
,
A.
,
Jalali
,
K.
,
Hamza
,
K.
,
Skerlos
,
S. J.
, and
Saitou
,
K.
,
2003
, “
Multi-Criteria Decision-Making for Optimization of Product Disassembly Under Multiple Situations
,”
Environ. Sci. Technol.
,
37
(
23
), pp.
5303
5313
.10.1021/es0345423
11.
Jolly
,
M.
,
Winward
,
P.
,
Pandey
, V
.
, and
Thurston
,
D. L.
,
2006
, “
Mass Customization Optimization Using Social Network Based Product Architecture Representation
,”
Proceedings of ASME International Design Engineering Technical Conferences
,
Philadelphia
, September 10–13.
12.
Deb
,
K.
, and
Jain
,
S.
,
2003
, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
609
619
.10.1115/1.1596242
13.
MacDonald
,
E. F.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2009
, “
Preference Inconsistency in Multidisciplinary Design Decision Making
,”
ASME J. Mech. Des.
,
131
(
3
), p.
031009
.10.1115/1.3066526
14.
Train
,
K.
,
2003
,
Discrete Choice Analysis With Simulation
,
Cambridge University Press
, London, UK, p.
152
.
15.
Louviere
,
J.
,
Street
,
D.
,
Carson
,
R.
,
Ainslie
,
A.
,
Deshazo
,
J. R.
,
Cameron
,
T.
,
Hensher
,
D.
,
Kohn
,
R.
, and
Marley
,
T.
,
2002
, “
Dissecting the Random Component of Utility
,”
Mark. Lett.
,
13
(
3
), pp.
177
193
.10.1023/A:1020258402210
16.
Busemeyer
,
J. R.
, and
Townsend
,
J. T.
,
1993
, “
Decision Field Theory: A Dynamic Cognition Approach to Decision Making
,”
Psychol. Rev.
,
100
(
3
), pp.
432
459
.10.1037/0033-295X.100.3.432
17.
Srinivas
,
N.
, and
Deb
,
K.
,
1995
, “
Multi-Objective Function Optimization Using Nondominated Sorting Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.10.1162/evco.1994.2.3.221
18.
Keeney
,
R. L.
, and
Raiffa
,
H.
,
1994
,
Decisions With Multiple Objectives
,
Cambridge University Press
,
Cambridge, United Kingdom
.
19.
Clemen
,
R. T.
,
1997
,
Making Hard Decisions – An Introduction to Decision Analysis
,
2nd ed.
,
Duxbury Press , CA
.
20.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
,
2005
, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
514
524
.10.1115/1.1897408
21.
Mark
,
T. L.
, and
Swait
,
J.
,
2004
. “
Using Stated Preference and Revealed Preference Modeling to Evaluate Prescribing Decisions
,”
Health Econ.
,
13
(
6
), pp.
563
573
.10.1002/hec.845
22.
Fitzsimmons
,
P. J.
,
2007
, “
Converse Jensen Inequality
,” http://math.ucsd.edu/∼pfitz/downloads/conjen.pdf, accessed May 15, 2011.
23.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
,
2003
, “
An Information-Theoretic Entropy Metric for Assessing Multi-Objective Optimization Solution Set Quality
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
655
663
.10.1115/1.1623186
24.
Morris
,
P. A.
,
1977
, “
Combining Expert Judgments: A Bayesian Approach
,”
Manage. Sci.
,
23
(
7
), pp.
679
693
.10.1287/mnsc.23.7.679
25.
Schervish
,
M. J.
,
1986
, “
Comments on Some Axioms for Combining Expert Judgments
,”
Manage. Sci.
,
32
(
3
), pp.
306
312
.10.1287/mnsc.32.3.306
26.
Deb
,
K.
,
Pratap
,
A.
,
Agrawal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II
,”
IEEE Transactions on Evolutionary Computation
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.