Patient specific surgical guides (PSSGs) are used in joint replacement surgery to simplify the surgical process and to increase the accuracy in alignment of implant components with respect to the bone. Each PSSG is fabricated patient specifically and fits only in the planned position on the joint surface by the matching shape. During surgery, the surgeon holds the PSSG in the planned position and the incorporated guidance is used in making the essential cuts to fit the implant components. The shape of the PSSG determines its docking robustness (i.e., the range of forces that the surgeon may apply without losing the planned position). Minimal contact between the PSSG and the joint surface is desired, as this decreases the likelihood of interposition with undetected tissues. No analytical method is known from literature where the PSSG shape can be optimized to have high docking robustness and minimal bone-guide contact. Our objective is to develop and validate such an analytical method. The methods of motion restraint, moment labeling and wrench space—applied in robotic grasping and workpart fixturing—are employed in the creation of this new method. The theoretic approach is utilized in an example by optimizing the PSSG shape for one joint surface step-by-step. The PSSGs that arise from these optimization steps are validated with physical experiments. The following design tools for the analytical method are introduced. The optimal location for bone-guide contact and the application surface where the surgeon may push can be found graphically, respectively, by the use of the wrench space map and the application angle map. A quantitative analysis can be conducted using the complementary wrench space metrics and the robustness metric R. Utilization of the analytical method with an example joint surface shows that the PSSG's shape can be optimized. Experimental validation shows that the standard deviation of the error between the measured and calculated angular limits in the docking force is only 0.7 deg. The analytical method provides valid results and thus can be used for the design of PSSGs.

References

References
1.
Lotke
,
P.
, and
Ecker
,
M.
,
1977
, “
Influence of Positioning of Prosthesis in Total Knee Replacement
,”
J. Bone Jt. Surg. Am.
Vol.
59-A
(
1
), pp.
77
79
.
2.
Jeffery
,
R.
,
Morris
,
R.
, and
Denham
,
R.
,
1991
, “
Coronal Alignment After Total Knee Replacement
,”
J. Bone Jt. Surg. Br.
Vol.
73-B
(
5
), pp.
709
714
.
3.
Eckhoff
,
D.
,
Bach
,
J.
,
Spitzer
,
V.
,
Reinig
,
K.
,
Bagur
,
M.
,
Baldini
,
T.
, and
Flannery
,
N.
,
2005
, “
Three-Dimensional Mechanics, Kinematics, and Morphology of the Knee Viewed in Virtual Reality
,”
J. Bone Jt. Surg. Am.
,
87-A
(
Suppl. 2
), pp.
71
80
.10.2106/JBJS.E.00440
4.
Jaramaz
,
B.
,
Hafez
,
M.
, and
DiGioia
,
A.
,
2006
, “
Computer-Assisted Orthopaedic Surgery
,”
Proc. IEEE
,
94
(
9
), pp.
1689
1695
.10.1109/JPROC.2006.880675
5.
Kowal
,
J.
,
Langlotz
,
F.
, and
Nolte
,
L.
,
2007
, “
Basics of Computer-Assisted Orthopaedic Surgery
,”
Navigation and MIS in Orthopedic Surgery
, Springer, ed.,
Springer
,
New York
, pp.
2
8
.
6.
Sugano
,
N.
,
2003
, “
Computer-Assisted Orthopedic Surgery
,”
J. Orthop. Sci.
,
8
(
3
), pp.
442
448
.10.1007/s10776-002-0623-6
7.
Bäthis
,
H.
,
Perlick
,
L.
,
Tingart
,
M.
,
Lüring
,
C.
,
Zurakowski
,
D.
, and
Grifka
,
J.
,
2004
, “
Alignment in Total Knee Arthroplasty
,”
J. Bone Jt. Surg. Br.
Vol.
86-B
(
5
), pp.
682
687
.10.1302/0301-620X.86B5.14927
8.
Sparmann
,
M.
,
Wolke
,
B.
,
Czupalla
,
H.
,
Banzer
,
D.
, and
Zink
,
A.
,
2003
, “
Positioning of Total Knee Arthroplasty With and Without Navigation Support: A Prospective, Randomised Study
,”
J. Bone Jt. Surg. Br.
Vol.
85-B
(
6
), pp.
830
835
.
9.
Stöckl
,
B.
,
Nogler
,
M.
,
Rosiek
,
R.
,
Fischer
,
M.
,
Krismer
,
M.
, and
Kessler
,
O.
,
2004
, “
Navigation Improves Accuracy of Rotational Alignment in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
426
, pp.
180
186
.10.1097/01.blo.0000136835.40566.d9
10.
Chauhan
,
S.
,
Scott
,
R.
,
Breidahl
,
W.
, and
Beaver
,
R.
,
2004
, “
Computer-Assisted Knee Arthroplasty Versus a Conventional Jig-Based Technique: A Randomised, Prospective Trial
,”
J. Bone Jt. Surg. Br.
Vol.
86-B
(
3
), pp.
372
377
.10.1302/0301-620X.86B3.14643
11.
Matziolis
,
G.
,
Krocker
,
D.
,
Weiss
,
U.
,
Tohtz
,
S.
, and
Perka
,
C.
,
2007
, “
A Prospective, Randomized Study of Computer-Assisted and Conventional Total Knee Arthroplasty, Three-Dimensional Evaluation of Implant Alignment and Rotation
,”
J. Bone Jt. Surg.
,
89-A
(
2
), pp.
236
243
.
12.
van der Linden-van der Zwaag
,
H.
,
Valstar
,
E.
,
van der Molen
,
A.
, and
Nelissen
,
R.
,
2008
, “
Transepicondylar Axis Accuracy in Computer Assisted Knee Surgery: A Comparison of the CT-Based Measured Axis Versus the CAS-Determined Axis
,”
Comput. Aided Surg.
,
13
(
4
), pp.
200
206
.10.3109/10929080802240134
13.
Hafez
,
M.
,
Chelule
,
K.
,
Seedhom
,
B.
, and
Sherman
,
K.
,
2007
, “
Computer-Assisted Total Knee Arthroplasty Using Patient-Specific Templates: The Custom-Made Cutting Guides
,”
Navigation and MIS in Orthopedic Surgery
,
Springer
,
New York
, pp.
182
188
.
14.
Klatt
,
B.
,
Goyal
,
N.
,
Austin
,
M.
, and
Hozack
,
W.
,
2008
, “
Custom-Fit Total Knee Arthroplasty (Otisknee) Results in Malalignment
,”
J. Arthroplasty
,
23
(
1
), pp.
26
29
.10.1016/j.arth.2007.10.001
15.
Spencer
,
B.
,
Mont
,
M.
,
McGrath
,
M.
,
Boyd
,
B.
, and
Mitrick
,
M.
,
2009
, “
Initial Experience With Custom-Fit Total Knee Replacement: Intra-Operative Events and Long-Leg Coronal Alignment
,”
Int. Orthop.
,
33
(
6
), pp.
1571
1575
,10.1007/s00264-008-0693-x
16.
Asada
,
H.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
,
1
(
2
), pp.
86
94
.
17.
Dizioglu
,
B.
, and
Lakshiminarayana
,
K.
,
1984
, “
Mechanics of Form Closure
,”
Ăcta Mech.
,
52
(
1
), pp.
107
118
.10.1007/BF01175968
18.
Salisbury
,
J. K.
, and
Roth
,
B.
,
1983
, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
J. Mech. Transmissions Autom. Des.
,
105
(
1
), pp.
35
41
.10.1115/1.3267342
19.
Mishra
,
B.
,
Schwartz
,
J.
, and
Sharir
,
M.
,
1987
, “
On the Existence and Synthesis of Multifinger Positive Grips
,”
Algorithmica
,
2
(
1
), pp.
541
558
.10.1007/BF01840373
20.
Ohwovoriole
,
E.
,
1987
, “
Kinematics and Friction in Grasping by Robotic Hands
,”
J. Mech. Transmissions Autom. Des.
,
109
(
3
), pp.
398
404
.10.1115/1.3258809
21.
Nguyen
,
V.
,
1988
, “
Constructing Force-Closure Grasps
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
3
16
.10.1177/027836498800700301
22.
Markenscoff
,
X.
,
Ni
,
L.
, and
Papadimitriou
,
C.
,
1990
, “
The Geometry of Grasping
,”
Int. J. Rob. Res.
,
9
(
1
), pp.
61
74
.10.1177/027836499000900102
23.
Trinkle
,
J.
,
1992
, “
On the Stability and Instantaneous Velocity of Grasped Frictionless Objects
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
560
572
.10.1109/70.163781
24.
Rimon
,
E.
, and
Burdick
,
J.
,
1998
, “
Mobility of Bodies in Contact—Part I: A 2nd-Order Mobility Index for Multiple-Finger Grasps
,”
IEEE Trans. Rob. Autom.
,
14
(
5
), pp.
696
708
.10.1109/70.720346
25.
Brost
,
R.
, and
Goldberg
,
K.
,
1996
, “
A Complete Algorithm for Designing Planar Fixtures Using Modular Components
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
31
46
.10.1109/70.481749
26.
Chou
,
Y.
,
Chandru
,
V.
, and
Barash
,
M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
J. Eng. Ind.
,
111
(
4
), pp.
299
306
.10.1115/1.3188764
27.
Reuleaux
,
F.
,
1876
,
The Kinematics of Machinery: Outlines of a Theory of Machines
,
Macmillan
,
London
, pp.
103
112
.
28.
Mason
,
M. T.
,
2001
,
Mechanics of Robotic Manipulation
,
The MIT Press
.
29.
Dodou
,
D.
,
Breedveld
,
P.
, and
Wieringa
,
P.
,
2006
, “
The Role of Geometry in the Friction Generated on the Colonic Surface by Mucoadhesive Films
,”
J. Appl. Phys.
,
100
(
1
), p.
014904
.10.1063/1.2209070
30.
Bowden
,
F.
,
Moore
,
A.
, and
Tabor
,
D.
,
1943
, “
The Ploughing and Adhesion of Sliding Metals
,”
J. Appl. Phys.
,
14
(
2
), pp.
80
91
.10.1063/1.1714954
31.
Bicchi
,
A.
, and
Kumar
, V
.
,
2000
, “
Robotic Grasping and Contact: A Review
,”
IEEE International Conference Robotics and Automation
, Vol. 1, pp.
348
353
.
32.
Goldman
,
A.
, and
Tucker
,
A.
,
1956
, “
Polyhedral Convex Cones
,”
Linear Inequalities and Related Systems
,
Princeton University Press
, pp.
19
39
.
You do not currently have access to this content.