In this paper, we demonstrate how the principles of the freedom, actuation, and constraint topologies (FACT) approach may be applied to the synthesis, analysis, and optimization of microstructural architectures that possess extreme or unusual thermal expansion properties (e.g., zero or large negative-thermal expansion coefficients). FACT provides designers with a comprehensive library of geometric shapes, which may be used to visualize the regions wherein various microstructural elements can be placed for achieving desired bulk material properties. In this way, designers can rapidly consider and compare a multiplicity of microstructural concepts that satisfy the desired design requirements before selecting the final concept. A complementary analytical tool is also provided to help designers rapidly calculate and optimize the desired thermal properties of the microstructural concepts that are generated using FACT. As a case study, this tool is used to calculate the negative-thermal expansion coefficient of a microstructural architecture synthesized using FACT. The result of this calculation is verified using a finite element analysis (FEA) package called ale3d.

References

References
1.
Chen
,
S. C.
, and
Culpepper
,
M. L.
,
2006
, “
Design of Contoured Microscale Thermomechanical Actuators
,”
J. Microelectromech. Syst.
,
15
(
5
), pp.
1226
1234
.10.1109/JMEMS.2006.879692
2.
Timoshenko
,
S.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
11
(
3
), pp.
233
255
.10.1364/JOSA.11.000233
3.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
4.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.10.1016/j.precisioneng.2009.06.007
5.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precis. Eng.
,
35
(
4
), pp.
638
649
.10.1016/j.precisioneng.2011.04.006
6.
Hopkins
,
J. B.
,
2007
, “
Design of Parallel Flexure Systems via Freedom and Constraint Topologies (FACT)
,” Masters thesis,
Massachusetts Institute of Technology
,
MA
.
7.
Hopkins
,
J. B.
,
2010
, “
Design of Flexure-Based Motion Stages for Mechatronic Systems via Freedom, Actuation and Constraint Topologies (FACT)
.” Ph.D. thesis,
Massachusetts Institute of Technology
,
MA
.
8.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
9.
Su
,
H.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
J. Mech. Rob.
,
1
(
4
), p.
041009
.10.1115/1.3211024
10.
Phillips
,
J.
,
1984
,
Freedom in Machinery: Volume 1, Introducing Screw Theory
,
Cambridge University Press
,
New York, NY
.
11.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
12.
Bothema
,
R.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover
,
New York
.
13.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.10.1002/(SICI)1097-4563(199812)15:1<43::AID-ROB4>3.0.CO;2-S
14.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press LLC
,
Boca Raton, FL
.
15.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems—I, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.10.1016/0094-114X(90)90103-Q
16.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems—I: One- and Two-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
459
470
.10.1016/0094-114X(92)90037-I
17.
Dai
,
J. S.
, and
Rees
,
J. J.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
665
.10.1016/S0094-114X(01)00004-0
18.
Jefferson
,
G.
,
Parthasarathy
,
T. A.
, and
Kerans
,
R. J.
,
2009
, “
Tailorable Thermal Expansion Hybrid Structures
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2372
2387
.10.1016/j.ijsolstr.2009.01.023
19.
Lakes
,
R. S.
,
1996
, “
Cellular Solid Structures With Unbounded Thermal Expansion
,”
J. Mater. Sci. Lett.
,
15
, pp.
475
477
.10.1007/BF0027540
20.
Lakes
,
R. S.
,
2007
, “
Solids With Tunable Positive or Negative Thermal Expansion of Unbounded Magnitude
,”
Appl. Phys. Lett.
,
90
, p.
221905
.10.1063/1.2743951
21.
Lakes
,
R. S.
,
1996
, “
Dense Solid Microstructures With Unbounded Thermal Expansion
,”
J. Mech. Behav.
,
7
, pp.
85
92
.10.1515/JMBM.1996.7.2.85
22.
Steeves
,
C. A.
,
Lucato
,
S. L.
,
He
,
M.
,
Antinucci
,
E.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2007
, “
Concepts for Structurally Robust Materials That Combine Low Thermal Expansion With High Stiffness
,”
J. Mech. Phys. Solids
,
55
, pp.
1803
1822
.10.1016/j.jmps.2007.02.009
23.
Cribb
,
J. L.
,
1963
, “
Shrinkage and Thermal Expansion of a Two Phase Material
,”
Nature
,
220
, pp.
576
577
.10.1038/220576a0
24.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids.
45
(
60
), pp.
1037
1067
.10.1016/S0022-5096(96)00114-7
25.
Sigmund
,
O.
, and
Torquato
,
S.
,
1996
, “
Composites With Extremal Thermal Expansion Coefficients
,”
Appl. Phys. Lett.
,
69
(
21
), pp.
3203
3205
.10.1063/1.117961
26.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.10.1088/0964-1726/8/3/308
27.
Wang
,
X.
,
Mei
,
Y.
, and
Wang
,
M. Y.
,
2004
, “
Level Set Method for Design of Multi-Phase Elastic and Thermoelastic Materials
,”
Int. J. Mech. Mater. Des.
,
1
(
3
), pp.
213
239
.10.1007/s10999-005-0221-8
28.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3443
3459
.10.1016/S0045-7825(00)00278-4
29.
Bruns
,
T. E.
,
Sigmund
,
O.
, and
Tortorelli
,
D. A.
,
2002
, “
Numerical Methods for the Topology Optimization of Structures that Exhibit Snap-Through
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
1215
1237
.10.1002/nme.544
30.
Heo
,
S.
,
Yoon
,
G. H.
, and
Kim
,
Y. Y.
,
2008
, “
Minimum Scale Controlled Topology Optimization and Experimental Test of a Micro Thermal Actuator
,”
Sens. Actuators, A
,
141
(
2
), pp.
603
609
.10.1016/j.sna.2007.10.003
31.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
,
2003
, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
,
31
, pp.
151
179
.10.1081/SME-120020289
32.
Wang
,
M. Y.
,
Chen
,
S. K.
,
Wang
,
X.
, and
Mei
,
Y.
,
2005
, “
Design of Multi-Material Compliant Mechanisms Using Level Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.10.1115/1.1909206
33.
Spadaccini
,
C. M.
,
Farquar
,
G.
,
Weisgraber
,
T.
,
Gemberling
,
S.
,
Fang
,
N.
,
Xu
,
J.
, and
Alonso
,
M.
,
2009
, “
High Resolution Projection Microstereolithography for 3-D Fabrication
,”
National Nanomanufacturing Summit
,
Boston, MA
.
34.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
, pp.
113
120
.10.1016/j.sna.2004.12.011
35.
Ahn
,
B. Y.
,
Duoss
,
E. B.
,
Motala
,
M. J.
,
Guo
,
X.
,
Park
,
S.
,
Xiong
,
Y.
,
Yoon
,
J.
,
Nuzzo
,
R. G.
,
Rogers
,
J. A.
, and
Lewis
,
J. A.
,
2009
, “
Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes
,”
Science
,
323
, pp.
1590
1593
.10.1126/science.1168375
36.
Duoss
,
E. B.
,
Twardowski
,
M.
, and
Lewis
,
J. A.
,
2007
, “
Sol-Gel Inks for Direct-Write Assembly of Functional Oxides
,”
Adv. Mater.
,
19
, pp.
3485
3489
.10.1002/adma.200701372
37.
Besra
,
L.
, and
Liu
,
M.
,
2007
, “
A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD)
,”
Prog. Mater. Sci.
,
52
, pp.
1
61
.10.1016/j.pmatsci.2006.07.001
38.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
A Screw Theory Basis for Quantitative and Graphical Design Tools that Define Layout of Actuators to Minimize Parasitic Errors in Parallel Flexure Systems
,”
Precis. Eng.
,
34
(
4
), pp.
767
776
.10.1016/j.precisioneng.2010.05.004
39.
Qui
,
C.
,
Yu
,
J. J.
, and
Li
,
S. Z.
,
2011
, “
Synthesis of Actuation Spaces of Multi-Axis Parallel Flexure Mechanisms Based on Screw Theory
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2011)
,
Washington, DC
.
40.
Hopkins
,
J. B.
,
2012
, “
Modeling and Generating New Flexure Constraint Elements
,”
Proceedings of the 12th euspen International Conference
,
Stockholm, Sweden
.
41.
Hopkins
,
J. B.
,
2013
, “
Analyzing and Designing Serial Flexure Elements
,”
Submitted to Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, IDETC/CIE 2013,
Portland, OR
.
You do not currently have access to this content.