This paper presents the design, analysis, and control of a novel micromanipulation system to facilitate the safe handling/probing of biological cells. The robotic manipulator has a modular design, where each module provides two degrees-of-freedom (2DOF) and the overall system can be made up of a number of modules depending on the desired level of dexterity. The module design has been optimized in simulation using an integrated ionic polymer-metal composite (IPMC) model and mechanical mechanism model to ensure the best system performance from the available IPMC material. The optimal system consists of two modules with each DOF actuated by a 27.5 mm long by 10 mm wide actuator. A 1DOF control structure has been developed, which is adaptively tuned using a model-free iterative feedback tuning (IFT) algorithm to adjust the controller parameters to optimize the system tracking performance. Experimental results are presented which show the tuning of the system improves the performance by 24% and 64% for the horizontal and vertical motion, respectively. Experimental characterization has also been undertaken to show the system can accurately achieve outputs of up to 7 deg and results for position tracking in both axes are also presented.

References

References
1.
Inoue
,
K.
,
Tanikawa
,
T.
, and
Arai
,
T.
,
2008
, “
Micro-Manipulation System With a Two-Fingered Micro-Hand and Its Potential Application in Bioscience
,”
J. Biotechnol.
,
133
, pp.
219
224
.10.1016/j.jbiotec.2007.08.027
2.
Yih
,
T.
, and
Talpasanu
,
I. E.
,
2008
,
Micro and Nano Manipulations for Biomedical Applications
,
Artech House, Inc.
,
Boston
.
3.
Asiyanbola
,
B.
, and
Soboyejo
,
W.
,
2008
, “
For the Surgeon: An Introduction to Nanotechnology
,”
J. Surg. Educ.
,
65
, pp.
155
161
.10.1016/j.jsurg.2007.11.006
4.
McDaid
,
A. J.
,
Aw
,
K. C.
,
Xie
,
S. Q.
, and
Haemmerle
,
E.
,
2010
, “
Gain Scheduled Control of IPMC Actuators With “Model-Free” Iterative Feedback Tuning
,”
Sens. Actuators, A
,
164
, pp.
137
147
.10.1016/j.sna.2010.09.023
5.
Shahinpoor
,
M.
, and
Kim
,
K. J.
,
2001
, “
Ionic Polymer-Metal Composites: I. Fundamentals
,”
Smart Mater. Struct.
,
10
, pp.
819
833
.10.1088/0964-1726/10/4/327
6.
Manley
,
S.
,
McDaid
,
A.
,
Aw
,
K.
,
Haemmerle
,
E.
, and
Xie
,
S.
,
2009
, “
Experimental Performance and Feasibility of a Miniature Single-Degree-Of-Freedom Rotary Joint With Integrated IPMC Actuator
,”
Presented at the Electroactive Polymers and Devices
,
San Diego
, Proceedings of SPIE - The International Society for Optical Engineering, 7287, no. 72870I.
7.
Zhe
,
L.
, Chen, P. C. Y., Nam, J., Ge, R., and Lin, W.,
2007
, “
A Micromanipulation System With Dynamic Force-Feedback for Automatic Batch Microinjection
,”
J. Micromech. Microeng.
,
17
, no. 314.10.1088//0960-1317/17/2/018/
8.
Takeuchi
,
M.
,
Nakajima
,
M.
,
Kojima
,
M.
, and
Fukuda
,
T.
,
2010
, “
Soft Handling Probe Using Thermal Gel for Single Cells
,”
Micro-NanoMechatronics and Human Science (MHS), 2010 International Symposium on
, pp.
311
316
.
9.
Asaka
,
K.
, and
Oguro
,
K.
,
2009
, “
Active Microcatheter and Biomedical Soft Devices Based on IPMC Actuators
,”
Biomedical Applications of Electroactive Polymer Actuators
,
F.
Capri
and
E.
Smela
, eds.,
Wiley
,
Chichester, United Kingdom
.
10.
Shahinpoor
,
M.
,
2009
, “
Implantable Heart-Assist and Compression Devices Employing an ActiveNetwork of Ellectrically-Controllable Ionic Polymer-Metal Nanocomposites
,”
Biomedical Applications of Electroactive Polymer Actuators
,
F.
Capri
and
E.
Smela
, eds.,
Wiley
,
Chichester, United Kingdom
.
11.
Aw
,
K. C.
,
Yu
,
W.
,
McDaid
,
A. J.
, and
Xie
,
S. Q.
,
2011
, “
An IPMC Driven Micropump With Adaptive On-Line Iterative Feedback Tuning
,”
Presented at the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2011)
,
Budapest, Hungary
.
12.
Konyo
,
M.
, and
Tadokoro
,
S.
,
2009
, “
IPMC Based Tactile Displays for Pressure and Texture Presentation on a Human Finger
,”
Biomedical Applications of Electroactive Polymer Actuators
,
F.
Capri
and
E.
Smela
, eds.,
Wiley
,
Chichester, United Kingdom
.
13.
Nam
,
J. H.
,
Chen
,
P. C. Y.
,
Lu
,
Z.
,
Luo
,
H.
,
Ge
,
R.
, and
Lin
,
W.
,
2010
, “
Force Control for Mechanoinduction of Impedance Variation in Cellular Organisms
,”
J. Micromech. Microeng.
,
20
(2)
, no.
025003
.10.1088/0960-1317/20/2/025003
14.
Deok-Ho
,
K.
,
Seok
,
Y.
, and
Byungkyu
,
K.
,
2004
, “
Mechanical Force Response of Single Living Cells Using a Microrobotic System
,”
Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, Vol. 5
, pp.
5013
5018
.
15.
McDaid
,
A. J.
,
Aw
,
K. C.
,
Xie
,
S. Q.
, and
Haemmerle
,
E.
,
2011
, “
Development of a 2DOF Micromanipulation System with IPMC Actuators
,”
Presented at the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
,
Budapest, Hungary
.
16.
Branco
,
P. J. C.
, and
Dente
,
J. A.
,
2006
, “
Derivation of a Continuum Model and Its Electric Equivalent-Circuit Representation for Ionic Polymer-Metal Composite (IPMC) Electromechanics
,”
Smart Mater. Struct.
,
15
, pp.
378
392
.10.1088/0964-1726/15/2/019
17.
Pugal
,
D.
,
Kim
,
K. J.
, and
Aabloo
,
A.
,
2011
, “
An Explicit Physics-Based Model of Ionic Polymer-Metal Composite Actuators
,”
J. Appl. Phys.
,
110
, p. 084904.10.1063/1.3650903
18.
Chen
,
Z.
, and
Tan
,
X.
,
2008
, “
A Control-Oriented and Physics-Based Model for Ionic Polymer-Metal Composite Actuators
,”
IEEE/ASME Trans. Mechatron.
,
13
, pp.
519
529
.10.1109/TMECH.2008.920021
19.
Punning
,
A.
,
Johanson
,
U.
,
Anton
,
M.
,
Aabloo
,
A.
, and
Kruusmaa
,
M.
,
2009
, “
A Distributed Model of Ionomeric Polymer Metal Composite
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
1711
1724
.10.1177/1045389X09337170
20.
McDaid
,
A. J.
,
Aw
,
K. C.
,
Xie
,
S. Q.
, and
Haemmerle
,
E.
,
2010
, “
A Conclusive Scalable Model for the Complete Actuation Response for IPMC Transducers
,”
Smart Mater. Struct.
,
19
, p.
075011
.10.1088/0964-1726/19/7/075011
21.
Bonomo
,
C.
,
Fortuna
,
L.
,
Giannone
,
P.
,
Graziani
,
S.
, and
Strazzeri
,
S.
,
2007
, “
A Nonlinear Model for Ionic Polymer Metal Composites as Actuators
,”
Smart Mater. Struct.
,
16
, pp.
1
12
.10.1088/0964-1726/16/1/001
22.
Liu
,
D.
,
McDaid
,
A. J.
,
Aw
,
K. C.
, and
Xie
,
S. Q.
,
2011
, “
Position Control of an Ionic Polymer Metal Composite Actuated Rotary Joint Using Iterative Feedback Tuning
,”
Mechatronics
,
21
, pp.
315
328
.10.1016/j.mechatronics.2010.12.001
23.
Yun
,
K.
, and
Kim
,
W. J.
,
2006
, “
Microscale Position Control of an Electroactive Polymer Using an Anti-Windup Scheme
,”
Smart Mater. Struct.
,
15
, pp.
924
930
.10.1088/0964-1726/15/4/004
24.
Hjalmarsson
,
H.
,
2002
, “
Iterative Feedback Tuning—An Overview
,”
Int. J. Adapt. Control Signal Process.
,
16
, pp.
373
395
.10.1002/acs.714
25.
Hjalmarsson
,
H.
,
Gunnarsson
,
S.
, and
Gevers
,
M.
,
1994
, “
A Convergent Iterative Restricted Complexity Control Design Scheme
,”
Decision and Control, 1994, Proceedings of the 33rd IEEE Conference on
, pp.
1735
1740
.
26.
Hjalmarsson
,
H.
,
Gevers
,
M.
,
Gunnarsson
,
S.
, and
Lequin
,
O.
,
1998
, “
Iterative Feedback Tuning-Theory and Applications
,”
IEEE Control Syst. Mag.
,
18
, pp.
26
41
.10.1109/37.710876
27.
Graham
,
A. E.
,
Young
,
A. J.
, and
Xie
,
S. Q.
,
2007
, “
Rapid Tuning of Controllers by IFT for Profile Cutting Machines
,”
Mechatronics
,
17
, pp.
121
128
.10.1016/j.mechatronics.2006.08.002
28.
McDaid
,
A. J.
,
Aw
,
K. C.
,
Haemmerle
,
E.
, and
Xie
,
S. Q.
,
2012
, “
Control of IPMC Actuators for Micro-Fluidics With Adaptive “Online” Iterative Feedback Tuning
,”
IIEEE/ASME Trans. Mechatron
, no. 5756691,
17
(
4
), pp.
789
797
.10.1109/TMECH.2011.2135373
You do not currently have access to this content.