Innovation processes are highly susceptible to cyclic influences, such as evolving knowledge due to new technologies. In order to better meet these challenges, improved computational design support is required. Paper-based design methods have vast amounts of knowledge at their disposal in the form of their design catalogs. However, they lack a corresponding computational implementation that could lead to increased use in design. The method presented is targeted at making the physical effects contained in design catalogs available for use within computational design synthesis approaches. This paper introduces the notion of abstraction ports that are used to represent the valid mapping between functional operators and physical effects. For the automated assignment of abstraction ports, a method is presented that analyzes the equation structure of physical effects. This approach is derived from the modeling technique of bond graphs and is independent of any selection process proposed by design catalogs. Moreover, it allows for the uniform formalization of evolving knowledge in new physical effects that are not yet contained in design catalogs. The assignment of abstraction ports is successfully validated through the formalization of the physical effects of two design catalogs. Furthermore, a software prototype is developed that implements a search process for suitable physical effects for a given function. Future work includes the integration of quantitative characteristics of physical effects and the integration of the approach within the object-oriented graph grammar implementation booggie (project web site: http://booggie.org) for computational design synthesis.

References

References
1.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
2007
,
Engineering Design: A Systematic Approach
,
3rd ed.
,
Springer
,
London
.
2.
Ehrlenspiel
,
K.
,
2009
,
Integrierte Produktentwicklung
,
4th ed.
,
Hanser
,
München, Germany
.
3.
Koller
,
R.
,
1994
,
Konstruktionslehre für den Maschinenbau
,
3rd ed.
,
Springer
,
Berlin
.
4.
Ponn
,
J.
, and
Lindemann
,
U.
,
2011
,
Konzeptentwicklung und Gestaltung technischer Produkte
,
2nd ed.
,
Springer
,
Berlin
.
5.
Koller
,
R.
, and
Kastrup
,
N.
,
1998
,
Prinziplösungen zur Konstruktion technischer Produkte
,
2nd ed.
,
Springer
,
Berlin
.
6.
Roth
,
K.
,
2001
,
Konstruieren mit Konstruktionskatalogen II—Konstruktionskataloge
,
3rd ed.
,
Springer
,
Berlin
.
7.
Hix
,
C. F.
, and
Alley
,
R. P.
,
1958
,
Physical Laws and Effects
,
John Wiley & Sons
,
New York
.
8.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
. “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.10.1007/s00163-001-0008-3
9.
Hundal
,
M.
,
1990
, “
A Systematic Method for Developing Function Structures, Solutions and Concept Variants
,”
Mech. Mach. Theory
,
25
(
3
), pp.
243
256
.10.1016/0094-114X(90)90027-H
10.
Altshuller
,
G. S.
,
1984
,
Creativity as an Exact Science
,
Gordon and Breach
,
Amsterdam
.
11.
Helms
,
B.
, and
Shea
,
K.
,
2012
, “
Computational Synthesis of Product Architectures Based on Object-Oriented Graph Grammars
,”
J. Mech. Des.
,
134
(
2
), p.
021008
.10.1115/1.4005592
12.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.10.1115/1.2013289
13.
Ulrich
,
K.
, and
Eppinger
,
S. D.
,
2008
,
Product Design and Development
,
4the ed.
,
McGraw Hill
,
New York
.
14.
Eder
,
W. E.
, and
Hosnedl
,
S.
,
2008
,
Design Engineering a Manual for Enhanced Creativity
,
CRC Press
,
Boca Raton, FL
.
15.
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1995
, “
FBS Modeling: Modeling Scheme of Function for Conceptual Design
,”
Proceedings of the 9th International Workshop on Qualitative Reasoning
, pp.
271
278
.
16.
Gero
,
J. S.
,
2004
, “
The Situated Function-Behaviour-Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.10.1016/j.destud.2003.10.010
17.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2006
, “
A Graph Grammar Based Framework for Automated Concept Generation
,”
Proceedings of the 9th International Design Conference, DESIGN 2006
,
D.
Marjanovic
, ed.,
The Design Society
,
Somerset, UK
, pp.
61
68
.
18.
Kerzhner
,
A. A.
, and
Paredis
,
C. J. J.
,
2009
, “
Using Domain Specific Languages to Capture Design Synthesis Knowledge for Model-Based Systems Engineering
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009
.
19.
Schmidt
,
L. C.
,
Shetty
,
H.
, and
Chase
,
S. C.
,
2000
, “
A Graph Grammar Approach for Structure Synthesis of Mechanisms
,”
J. Mech. Des.
,
122
(
4
), pp.
371
376
.10.1115/1.1315299
20.
Starling
,
A. C.
, and
Shea
,
K.
,
2005
, “
A Parallel Grammar for Simulation-Driven Mechanical Design Synthesis
,”
Proceedings of the ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2005
.
21.
Lin
,
Y.-S.
,
Shea
,
K.
,
Johnson
,
A. L.
,
Coultate
,
J.
, and
Pears
,
J.
,
2009
, “
A Method and Software Tool for Automated Gearbox Synthesis
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009
, pp.
111
121
.
22.
Bolognini
,
F.
,
Seshia
,
A. A.
, and
Shea
,
K.
,
2007
, “
Exploring the Application of Multidomain Simulationbased Computational Synthesis Methods in MEMS Design
,”
Proceedings of the International Conference on Engineering Design, ICED ’07
,
J.-C.
Bocquet
, ed.,
The Design Society
,
Somerset, UK
, pp.
81
82
.
23.
Hoisl
,
F.
, and
Shea
,
K.
,
2011
, “
An Interactive, Visual Approach to Developing and Applying Parametric Three Dimensional Spatial Grammars
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
25
(
4
), pp.
333
356
.10.1017/S0890060411000205
24.
Helms
,
B.
,
Shea
,
K.
, and
Hoisl
,
F.
,
2009
, “
A Framework for Computational Design Synthesis Based on Graph-Grammars and Function-Behavior-Structure
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, IDETC/CIE 2009, pp.
841
851
.
25.
Helms
,
B.
, and
Shea
,
K.
,
2010
, “
Object-Oriented Concepts for Computational Design Synthesis
,”
Proceedings of the 11th International Design Conference, DESIGN 2010
,
D.
Marjanović
,
M.
Štorga
,
N.
Pavković
, and
N.
Bojčetić
, eds.,
The Design Society
,
Somerset, UK
, pp.
1333
1342
.
26.
Liang
,
V.-C.
, and
Paredis
,
C. J. J.
,
2004
, “
A Port Ontology for Conceptual Design of Systems
,”
J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
206
217
.10.1115/1.1778191
27.
Yoshioka
,
M.
,
Umeda
,
Y.
,
Takeda
,
H.
,
Shimomurad
,
Y.
,
Nomaguchi
,
Y.
, and
Tomiyama
,
T.
,
2004
, “
Physical Concept Ontology for the Knowledge Intensive Engineering Framework
,”
Adv. Eng. Inf.
,
18
(
2
), pp.
95
113
.10.1016/j.aei.2004.09.004
28.
Komoto
,
H.
, and
Tomiyama
,
T.
,
2010
, “
Computational Support for System Architecting
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2010
, pp.
1
10
.
29.
Žavbi
,
R.
, and
Rihtaršič
,
J.
,
2009
, “
Synthesis of Elementary Product Concepts Based on Knowledge Twisting
,”
Res. Eng. Des.
,
21
(
2
), pp.
69
85
.10.1007/s00163-009-0076-3
30.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernandez
,
B. R.
,
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
J. Mech. Des.
,
130
(
4
), p.
041102
.10.1115/1.2885180
31.
Paynter
,
H. A.
,
1961
,
Analysis and Design of Engineering Systems
,
MIT Press
,
Cambridge, MA
.
32.
Broenink
,
J.
,
1999
, “
Introduction to Physical Systems Modelling With Bond Graphs
,”
SiE Whitebook on Simulation Methodologies
,
Enschede
,
The Netherlands
, pp.
1
31
.
33.
Rosenberg
,
R. C.
, and
Karnopp
,
D. C.
,
1983
,
Introduction to Physical System Dynamics
,
McGraw Hill
,
NY
.
34.
Thoma
,
J.
, and
Ould Bouamama
,
B.
,
2000
,
Modelling and Simulation in Thermal and Chemical Engineering—A Bond Graph Approach
,
Springer
,
Berlin
.
35.
Brown
,
F. T.
,
2001
,
Engineering System Dynamics – A Unified Graph-Centered Approach
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.