Sequential sampling strategies have been developed for managing complexity when using computationally expensive computer simulations in engineering design. However, much of the literature has focused on objective-oriented sequential sampling methods for deterministic optimization. These methods cannot be directly applied to robust design, which must account for uncontrollable variations in certain input variables (i.e., noise variables). Obtaining a robust design that is insensitive to variations in the noise variables is more challenging. Even though methods exist for sequential sampling in design under uncertainty, the majority of the existing literature does not systematically take into account the interpolation uncertainty that results from limitations on the number of simulation runs, the effect of which is inherently more severe than in deterministic design. In this paper, we develop a systematic objective-oriented sequential sampling approach to robust design with consideration of both noise variable uncertainty and interpolation uncertainty. The method uses Gaussian processes to model the costly simulator and quantify the interpolation uncertainty within a robust design objective. We examine several criteria, including our own proposed criteria, for sampling the design and noise variables and provide insight into their performance behaviors. We show that for both of the examples considered in this paper the proposed sequential algorithm is more efficient in finding the robust design solution than a one-shot space filling design.

References

References
1.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.10.1115/1.2826915
2.
Al-Widyan
,
K.
, and
Angeles
,
J.
,
2005
, “
A Model-Based Formulation of Robust Design
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
388
396
.10.1115/1.1829728
3.
Chang
,
P. B.
,
Williams
,
B. J.
,
Bhalla
,
K. S. B.
,
Belknap
,
T. W.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
,
2001
, “
Design and Analysis of Robust Total Joint Replacements: Finite Element Model Experiments With Environmental Variables
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
239
246
.10.1115/1.1372701
4.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.10.1115/1.1561042
5.
Lee
,
S.
, and
Chen
,
W.
,
2008
, “
A Comparative Study of Uncertainty Propagation Methods for Black-Box-Type Problems
,”
Struct. Multidisc Optim.
,
37
(
3
), pp.
239
253
.10.1007/s00158-008-0234-7
6.
Hoffman
,
R.
,
Sudjianto
,
A.
,
Du
,
X.
, and
Stout
,
J.
,
2003
, “
Robust Piston Design and Optimization Using Piston Secondary Motion Analysis
,” SAE Paper No. 2003-01-0148.
7.
Repalle
,
J.
, and
Grandhi
,
R. V.
,
2005
, “
Design of Forging Process Variables under Uncertainties
,”
J. Mater. Eng. Perform.
,
14
(
1
), pp.
123
131
.10.1361/10599490522248
8.
Aslett
,
R.
,
Buck
,
R. J.
,
Duvall
,
S. G.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
1998
, “
Circuit Optimization via Sequential Computer Experiments: Design of an Output Buffer
,”
J. R. Stat. Soc.: Ser. C
,
47
(
1
), pp.
31
48
.10.1111/1467-9876.00096
9.
Apley
,
D.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.10.1115/1.2204974
10.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
,
2003
, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
25
(
2
), pp.
99
116
.10.1007/s00158-002-0277-0
11.
Mckay
,
M. D.
, and
Conover
,
W.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.1080/00401706.1979.10489755
12.
Osio
, I
.
, and
Amon
,
C. H.
,
1996
, “
An Engineering Design Methodology With Multistage Bayesian Surrogates and Optimal Sampling
,”
Res. Eng. Des.
,
8
(
4
), pp.
189
206
.10.1007/BF01597226
13.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
14.
Schonlau
,
M.
,
Welch
,
W. J.
, and
Jones
,
D. R.
,
1998
, “
Global versus Local Search in Constrained Optimization of Computer Models
,”
Lect. Notes Monogr. Ser.
,
34
, pp.
11
25
.10.1214/lnms/1215456182
15.
Picheny
, V
.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N.-H.
,
2010
, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071008
.10.1115/1.4001873
16.
Lam
,
C.
,
2008
, “
Sequential Adaptive Designs in Computer Experiments for Response Surface Model Fit
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
17.
Lehman
,
J.
,
Santner
,
T. J.
, and
Notz
,
W.
,
2004
, “
Designing Computer Experiments to Determine Robust Control Variables
,”
Stat. Sin.
,
14
(
2
), pp.
571
590
. Available at http://www3.stat.sinica.edu.tw/statistica/oldpdf/A14n213.pdf
18.
Williams
,
B. J.
,
Santner
,
T. J.
, and
Notz
,
W.
,
2000
, “
Sequential Design of Computer Experiments to Minimize Integrated Response Functions
,”
Stat. Sin.
,
10
(
4
), pp.
1133
1152
. Available at http://www3.stat.sinica.edu.tw/statistica/oldpdf/A10n46.pdf
19.
Williams
,
B. J.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Lehman
,
J. S.
,
2010
, “
Sequential Design of Computer Experiments for Constrained Optimization
,”
Statistical Modelling and Regression Structures
,
Springer
,
Berlin, Germany
,
20.
Jurecka
,
F.
,
2007
, “
Robust Design Optimization Based on Metamodeling Techniques
,” Ph.D. thesis, Technical University of Munich, Munich, Germany.
21.
Kim
,
C.
, and
Choi
,
K. K.
,
2008
, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121401
.10.1115/1.2988476
22.
Zhao
,
L.
,
Choi
,
K. K.
,
Lee
, I
.
, and
Du
,
L.
,
2009
, “
Response Surface Method Using Sequential Sampling for Reliability-Based Design Optimization
,”
Proceedings of the ASME International Design Engineering Technical Conferences
,
Brooklyn, NY
.
23.
Zhang
,
S.
,
Zhu
,
P.
,
Chen
,
W.
, and
Arendt
,
P.
,
2012
, “
Concurrent Treatment of Parametric Uncertainty and Metamodeling Uncertainty in Robust Design
,”
Struct. Multidiscip. Optim.
, 47(1), pp. 63–76.
24.
O'hagan
,
A.
,
1978
, “
Curve Fitting and Optimal Design for Prediction
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
40
(
1
), pp.
1
41
.
25.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
, pp.
409
423
.10.1214/ss/1177012413
26.
Schabenberger
,
O.
, and
Gotway
,
C.
,
2005
,
Statistical Methods for Spatial Data Analysis Text in Statistical Science
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
27.
Bushman
,
M.
,
2003
,
Radial Basis Functions: Theory and Implementations
,
Cambridge University Press
,
Cambridge, UK
.
28.
Vapnik
,
V.
,
2000
,
The Nature of Statistical Learning
,
Springer Science+Business Media
,
Berlin, Germany
.
29.
Myers
,
R.
, and
Montgomery
,
D.
,
2002
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
30.
Duffin
,
R.
,
Peterson
,
E.
, and
Zener
,
C.
,
1967
,
Geometric Programming
,
Wiley
,
New York
.
31.
Lehman
,
J.
,
2002
, “
Sequential Design of Computer Experiments for Robust Parameter Design
,” Ph.D. thesis, The Ohio State Univeristy, Columbus, OH.
32.
Rasmussen
,
C. E.
,
1996
, “
Evaluation of Gaussian Processes and Other Methods for Non-Linear Regression
,” Ph. D. thesis, University of Toronto, Toronto, ON.
33.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2004
, “
Analytical Metamodel-Based Global Sensitivity Analysis and Uncertainty Propogation for Robust Design
,” SAE Transactions Journal of Materials and Manufacturing Paper No. 2004-01-0429.
34.
Xiong
,
Y.
,
Chen
,
W.
,
Apley
,
D.
, and
Ding
,
X.
,
2007
, “
A Non-Stationary Covariance-Based Kriging Method for Metamodelling in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
71
(
6
), pp.
733
756
.10.1002/nme.1969
35.
Gramacy
,
R.
, and
Lee
,
H.
,
2008
, “
Bayesian Treed Gaussian Process Models With an Application to Computer Modeling
,”
J. Am. Stat. Assoc.
,
103
(
483
), pp.
1119
1130
.10.1198/016214508000000689
36.
Cressie
,
N.
,
1993
,
Statistics for Spatial Data, Wiley Series in Probability and Statistcs
,
Wiley
,
New York
.
37.
Billingsley
,
P.
,
1995
,
Probability and Measure
,
John Wiley & Sons, Inc.
,
New York
.
You do not currently have access to this content.