Modeling uncertainty through probabilistic representation in engineering design is common and important to decision making that considers risk. However, representations of uncertainty often ignore elements of “imprecision” that may limit the robustness of decisions. Furthermore, current approaches that incorporate imprecision suffer from computational expense and relatively high solution error. This work presents a method that allows imprecision to be incorporated into design scenarios while providing computational efficiency and low solution error for uncertainty propagation. The work draws on an existing method for representing imprecision and integrates methods for sparse grid numerical integration, resulting in the computationally efficient imprecise uncertainty propagation (CEIUP) method. This paper presents details of the method and demonstrates the effectiveness on both numerical case studies, and a thermocouple performance problem found in the literature. Results for the numerical case studies, in most cases, demonstrate improvements in both computational efficiency and solution accuracy for varying problem dimension and variable interaction when compared to optimized parameter sampling (OPS). For the thermocouple problem, similar behavior is observed when compared to OPS. The paper concludes with an overview of design problem scenarios in which CEIUP is the preferred method and offers opportunities for extending the method.

References

References
1.
Kemper
,
L. E.
,
Wei
,
C.
, and
Linda
,
S. C.
,
2006
,
Decision Making in Engineering Design
,
ASME
,
New York
, Chap. 2–3.
2.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.10.1115/1.2829328
3.
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
,
2006
, “
The Value of Using Imprecise Probabilities in Engineering Design
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
969
979
.10.1115/1.2204976
4.
Brunns
,
M.
, and
Paredis
,
C. J. J.
,
2006
, “
Numerical Methods for Propagating Imprecise Uncertainty
,”
Proceedings of the ASME International Design Engineering Conferences and Computers in Information Engineering Conference
,
Philadelphia, PA
, Paper No. DETC2006-99237.
5.
Hoffman
,
F. O.
, and
Hammonds
,
J. S.
,
1994
, “
Propagation of Uncertainty in Risk Assessments: The Need to Distinguish between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability
,”
Risk Anal.
,
14
(
5
), pp.
707
712
.10.1111/j.1539-6924.1994.tb00281.x
6.
Rekuc
,
S. J.
,
Aughenbaugh
,
J. M.
,
Bruns
,
M.
, and
Paredis
,
C. J. J.
,
2006
, “
Eliminating Design Alternatives Based on Imprecise Information
,”
Proceedings of the SAE 2006 World Congress
, Paper No. 2006-01-0272.
7.
Ferson
,
S.
, and
Donald
,
S.
,
1998
, “
Probability Bound Analysis
,”
Proceedings of the International Conference on Probabilistic Safety Assessment and Management (PSAM4)
,
Spring-Verlag
,
New York
.
8.
Morgan
,
B.
,
2006
, “
Propagation of Imprecise Probabilities through Black-Box Models
,” M.S. thesis, Georgia Institue of Technology, Atlanta, GA.
9.
Walley
,
P.
,
1991
,
Statistical Reasoning With Imprecise Probabilities
,
Chapman and Hall
,
New York
.
10.
Weber
,
M.
,
1987
, “
Decision Making With Incomplete Information
,”
Eur. J. Opr. Res.
,
28
(
1
), pp.
44
57
.10.1016/0377-2217(87)90168-8
11.
Gerstner
,
T.
, and
Griebel
,
M.
,
1998
, “
Numerical Integration Using Sparse Grids
,”
Numer. Algorithms
,
18
, pp.
209
232
.10.1023/A:1019129717644
12.
Ferson
,
S.
,
2002
,
Ramas Risk Calc.
,
Lewis Publisher
,
New York
.
13.
Regan
,
H. M.
,
Ferson
,
S.
, and
Berleant
,
D.
,
2004
, “
Equivalence of Methods for Uncertainty Propagation of Real-Valued Random Variables
,”
Int. J. Approx. Reason.
,
36
(
1
), pp.
1
30
.10.1016/j.ijar.2003.07.013
14.
Williamson
,
R. C.
, and
Downs
,
T.
,
1990
, “
Probabilistic Arithemetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds
,”
Int. J. Approx. Reason.
,
4
, pp.
89
158
.10.1016/0888-613X(90)90022-T
15.
Berleant
,
D.
,
1993
, “
Automatically Verfied Reasoning With Both Intervals and Probability Density
,”
Interval Comput.
,
2
, pp.
48
70
.
16.
Berleant
,
D.
, and
Goodman-Strauss
,
C.
,
1998
, “
Bounding Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals
,”
Reliab. Comput.
,
4
(
2
), pp.
147
165
.10.1023/A:1009933109326
17.
Berleant
,
D.
,
Xie
,
L.
, and
Zhang
J.
,
2003
, “
Statool: A Tool for Distribution Envelope Determination (Denv), an Interval-Based Algorithm for Arithmetic on Random Variables
,”
Reliab. Comput.
,
9
(
2
), pp.
91
108
.10.1023/A:1023082100128
18.
Berleant
,
D.
, and
Zhang
,
J.
,
2004
, “
Representation and Problem Solving With Distribution Envelope Determination (Denv)
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
153
168
.10.1016/j.ress.2004.03.009
19.
Zhang
,
J.
, and
Berleant
,
D.
,
2005
, “
Arithmetic on Random Variables: Squeezing the Envelopes With New Joint Distribution Constraints
,”
Proceedings of the 4th International Symposium on Imprecise Probabilities and Their Applications
,
Pittsburgh, PA
, pp.
416
422
.
20.
Yager
,
R. R.
,
1986
, “
Arithmetic and Other Operations on Dempster-Shafer Structures
,”
Int. J. Man-Mach. Stud.
,
25
, pp.
357
366
.10.1016/S0020-7373(86)80066-9
21.
Ferson
,
S.
,
Kreinovich
, V
.
,
Ginzburg
,
L.
,
Myers
,
D. S.
, and
Sentz
,
K.
,
2002
, “
Constructing Probability Boxes and Dempster-Shafer Structures
,” Technical Report No. SAND2002-4015, Sandia National Laboratories, Albuquerque, NM.
22.
Elishakoff
,
I.
,
2004
,
Safety Factors and Reliability: Friends or Foes?
,
Kluwer Academic Publishers
,
Dordretch, Netherlands
.
23.
Scott
,
M. J.
,
2004
,
Utility Methods in Engineering Design
,
Engineering Design Reliability Handbook, CRC Press
,
Boca Raton, FL
.
24.
Fernandez
,
M. C.
,
Seepersad
,
C. C.
,
Rosen
,
D. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2005
, “
Decision Support in Concurrent Engineering-Utility-Based Decision Support Problem
,”
Concurr. Eng. Res. Appl.
,
13
(
1
), pp.
13
28
.10.1177/1063293X05050912
25.
Lee
,
B. D.
,
Thompson
,
S. C.
, and
Paredis
,
C. J. J.
,
2010
, “
A Review of Methods for Design Under Uncertainty From the Perspective of Utility Theory
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
, pp.
473
482
.
26.
Thurston
,
D. L.
,
1990
, “
Multiattribute Utility Analysis in Design Management
,”
IEEE Trans. Eng. Mange.
,
37
(
4
), pp.
296
301
.10.1109/17.62329
27.
Winkler
,
R. L.
,
1996
, “
Uncertainty in Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
127
132
.10.1016/S0951-8320(96)00070-1
28.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Towards a Better Understanding of Modelling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.10.1115/1.1290247
29.
Mourelatos
,
Z. P.
, and
Liang
,
J.
,
2004
, “
An Efficient Unified Approach for Reliability and Robustness in Engineering Design
,”
NSF Workshop on Reliable Engineering Computing
,
Savannah, Georgia
.
30.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Methodology for Managing the Effect of Uncertainty in Simulation-Based Design
,”
AIAA J.
,
38
(
8
), pp.
1471
1477
.10.2514/2.1125
31.
Rober
,
C. P.
, and
Casella
,
G.
,
1999
,
Monte Carlo Statistical Methods
,
Springer-Verlag
,
New York
.
32.
Seo
,
H. S.
, and
Kwak
,
B. M.
,
2002
, “
Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information
,”
Int. J. Prod. Res.
,
40
, pp.
931
944
.10.1080/00207540110095709
33.
Xiong
,
F.
,
Greene
,
S.
,
Chen
,
W.
,
Xiong
,
Y.
, and
Yang
,
S.
,
2010
, “
A New Sparse Grid Based Method for Uncertainty Propagation
,”
J. Struct. Multidiscip. Optim.
,
41
, pp.
335
349
.10.1007/s00158-009-0441-x
34.
Xu
,
H.
, and
Rahman
,
S.
,
2004
, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
1992
2019
.10.1002/nme.1135
35.
Rahman
,
S.
, and
Wei
,
D.
,
2006
, “
A Univariate Approximation at Most Probable Point for Higher-Order Reliability Analysis
,”
Int. J. Solids Struct.
,
43
, pp.
2820
2839
.10.1016/j.ijsolstr.2005.05.053
36.
Rackwitz
,
R.
,
2001
, “
Reliability Analysis—A Review and Some Perspectives
,”
Struct. Saf.
,
23
, pp.
365
395
.10.1016/S0167-4730(02)00009-7
37.
Niederreiter
,
H.
,
1992
,
Random Number Generation and Quasi Monte Carlo Methods
,
SIAM
,
Philadelphia, PA
.
38.
Sloan
,
I. H.
, and
Joe
,
S.
,
1994
,
Lattice Methods for Multiple Integration
,
Oxford University Press
,
Oxford, UK
.
39.
Dooren
,
P.
V
.
, and
Ridder
,
L.
De
,
1976
, “
An Adaptive Algorithm for Numerical Integration Over an N-Dimensional Cube
,”
J. Comput. Appl. Math.
,
2
, pp.
207
217
.10.1016/0771-050X(76)90005-X
40.
Gentz
,
A.
, and
Malik
,
A. A.
,
1980
, “
An Adaptive Algorithm for Numerical Integration Over an N-Dimensional Rectangular Region
,”
J. Comput. Appl. Math.
,
6
, pp.
295
302
.10.1016/0771-050X(80)90039-X
41.
Barron
,
A. R.
,
1994
,
Approximation and Estimation Bounds for Artificial Neural Networks, Machine Learning
,
Kluwer Academic Publishers
,
Boston, MA
.
42.
Mhaskar
,
H. N.
,
1996
, “
Neural Networks and Approximation Theory
,”
Neural Networks
,
9
, pp.
711
722
.10.1016/0893-6080(95)00125-5
43.
Rekuc
,
S. J.
,
2005
, “
Eliminating Design Alternative Under Interval-Based Uncertainty
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
44.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
,
2008
,
Introduction to Probability
,
Athena Publications
,
Westport, CT
.
45.
Smolyak
,
S. A.
,
1963
, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Class of Functions
,”
Dokl. Akad. Nauk SSSR
,
4
, pp.
240
243
.
46.
Baszenski
,
G.
, and
Delvos
,
F. J.
,
1993
, “
Multivariate Boolean Midpoint Rules
,”
Numerical Integration IV
,
H.
Brass
and
G.
Hammerlin
, eds.,
Birkhauser
,
Basel
, pp.
1
11
.
47.
Paskov
,
S.
,
1993
, “
Average Case Complexity of Multivariate Integration for Smooth Functions
,”
J. Complex.
,
9
, pp.
291
312
.10.1006/jcom.1993.1019
48.
Bonk
,
T.
,
1994
, “
A New Algorithm for Multi-Dimensional Adaptive Numerical Quadrature
,”
Adaptive Methods-Algorithms, Theory and Applications
,
Hackbusch
,
W.
and
Wittum
,
G.
, eds.,
Vieweg
,
Brainschweig, Germany
, pp.
54
68
.
49.
Novak
,
E.
, and
Ritter
,
K.
,
1997
, “
The Curse of Dimension and a Universal Method for Numerical Integration
,”
Multivariate Approximation and Splines
,
G.
Nurnberger
,
J. W.
Schmidt
, and
G.
Walz
, eds.,
Birkhauser
,
Berlin, Germany
.
50.
Cools
,
R.
, and
Maerten
,
B.
,
1997
, “
Experiments With Smolyak's Algorithm for Integration Over a Hypercube
,”
Internal Report, Department of Computer Science, Katholieke Universiteit Leuven
,
Leuven, Belgium
.
51.
Foo
,
J.
,
Wan
,
X.
, and
Karniadakis
,
G.
,
2008
, “
The Multi-Element Probabilistic Collocation Methods (ME-PCM): Error Analysis and Applications
,”
J. Comput. Phys.
,
227
, pp.
9572
9595
.10.1016/j.jcp.2008.07.009
52.
Berger
,
J. O.
,
1985
,
Statistical Decision Theory and Baysian Analysis
,
2nd ed.
,
Springer
,
New York
.
53.
Utkin
,
L. V.
, and
Augustin
,
T.
,
2003
, “
Decision Making With Imprecise Second-Order Probabilities
,”
Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications
,
Lugano, Switzerland
, pp.
547
561
.
54.
Levi
,
I.
,
1974
, “
On Indeterminate Probabilities
,”
J. Philos.
,
71
, pp.
391
418
.10.2307/2025161
You do not currently have access to this content.