To cope with the challenges of market competition and the greater purchasing power of consumers, manufacturers have increased the variety of products they offer. Product families and reconfigurable manufacturing systems (RMS) are used to produce product variety cost-effectively. However, there is a lack of concurrent engineering methods for the joint design of a product family and an RMS, since existing concurrent engineering methods were developed for a single product and its associated manufacturing system. The presence of product variety brings challenges to the concurrent engineering of a product family and its reconfigurable assembly system (RAS), as the decision space is broader. This paper introduces a mathematical model for the concurrent design of a product family and a RAS. In addition, a mathematical model for the sequential approach to product family and RAS design is introduced to compare with the results of the concurrent methodology. A genetic algorithm has been developed to solve the models introduced for both the concurrent and sequential approaches. Examples are used to demonstrate the implementation of the concurrent approach to product family and RAS design and the benefits that could be achieved by using this approach. The solutions indicate that the concurrent design of product families and RASs leads to profits that are the same as or higher than the profits obtained with the sequential design approach. Therefore, the concurrent design of product families and RAS methodology is a more cost-effective approach to designing families of products and their associated manufacturing systems.

References

References
1.
Dewhurst
,
P.
, and
Boothroyd
,
G.
,
1984
, “
Design for Assembly: Automatic Assembly
,”
Mach. Des.
,
46
(
2
), pp.
87
92
.
2.
Nevins
,
J. L.
, and
Whitney
,
D.
,
1989
,
Concurrent Design of Products and Processes: A Strategy for the Next Generation in Manufacturing
,
McGraw-Hill
,
New York
.
3.
Meyer
,
M. H.
,
Terzakian
,
P.
, and
Utterback
,
J. M.
,
1997
, “
Metrics for Managing Research and Development in the Context of the Product Family
,”
Manag. Sci.
,
43
(
1
), pp.
88
111
.10.1287/mnsc.43.1.88
4.
Pine
,
B. J.
, II
,
1993
, “
Mass Customizing Products and Services
,”
Plann. Rev.
,
21
(
4
), pp.
6
8
.
5.
Koren
,
Y.
,
2010
,
The Global Manufacturing Revolution: Product-Process-Business Integration and Reconfigurable Systems
,
Wiley
,
Hoboken, NJ
.
6.
Koren
,
Y.
,
Heisel
,
U.
,
Jovan
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Van Brussel
,
H.
,
1999
, “
Reconfigurable Manufacturing Systems
,”
Ann. CIRP
,
48
(
2
), pp.
527
540
.10.1016/S0007-8506(07)63232-6
7.
Jose
,
A.
, and
Tollenaere
,
M.
,
2005
, “
Modular and Platform Methods for Product Family Design: Literature Analysis
,”
J. Intell. Manuf.
,
16
(
3
), pp.
371
390
.10.1007/s10845-005-7030-7
8.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2006
, “
Product Family Design and Product-Based Platform Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.10.1007/s10845-007-0003-2
9.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2008
,
Product Design and Development
,
McGraw-Hill
,
New York
, Chap. 11, pp.
209
234
.
10.
Gonzalez-Zugasti
,
J.
,
Otto
,
K.
, and
Baker
,
J.
,
2000
, “
A Method for Architecting Product Platforms
,”
Res. Eng. Des.
,
12
(
2
), pp.
61
72
.10.1007/s001630050024
11.
Green
,
P.
, and
Krieger
,
A.
,
1985
, “
Models and Heuristics for Product Line Selection
,”
Mark. Sci.
,
4
(
1
), pp.
1
19
.10.1287/mksc.4.1.1
12.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Perez-Duarte
,
A.
,
2005
, “
Platform Selection Under Performance Bounds in Optimal Design of Product Families
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
524
535
.10.1115/1.1899176
13.
Li
,
H.
, and
Azarm
,
S.
,
2002
, “
An Approach for Product Line Design Selection Under Uncertainty and Competition
,”
ASME J. Mech. Design
,
124
(
3
), pp.
385
392
.10.1115/1.1485740
14.
Green
,
P. E.
, and
Srinivasan
, V
.
,
1990
, “
Conjoint Analysis in Marketing: New Developments With Implications for Research and Practice
,”
J. Market.
,
54
(
4
), pp.
3
19
.10.2307/1251756
15.
Green
,
P. E.
,
Krieger
,
A. M.
, and
Wind
,
Y.
,
2001
, “
Thirty Years of Conjoint Analysis: Reflections and Prospects
,”
Interfaces
,
31
(
3
), pp.
S56
S73
.10.1287/inte.31.3s.56.9676
16.
Green
,
P.
, and
Krieger
,
A.
,
1989
, “
Recent Contributions to Optimal Product Positioning and Buyer Segmentation
,”
Eur. J. Oper. Res.
,
41
(
2
), pp.
127
141
.10.1016/0377-2217(89)90375-5
17.
Hensher
,
D. A.
,
Rose
,
J. M.
, and
Greene
,
W. H.
,
2005
,
Applied Choice Analysis
,
Cambridge University Press
,
Cambridge, England
.
18.
Kholi
,
R.
, and
Krishnamurti
,
R.
,
1987
, “
A Heuristic Approach to Product Design
,”
Manag. Sci.
,
33
(
12
), pp.
1523
1533
.10.1287/mnsc.33.12.1523
19.
Shocker
,
A. D.
, and
Srinivasan
, V
.
,
1979
, “
Multiattribute Approaches for Product Concept Evaluation and Generation: A Critical Review
,”
Manag. Sci.
,
16
(
2
), pp.
159
180
.
20.
Sudharshan
,
D.
,
May
,
J. H.
, and
Gruca
,
T.
,
1988
, “
An Analytical Procedure for Generating Optimal New Product Concepts for a Differentiated-Type Strategy
”,
Eur. J. Oper. Res.
,
36
(
1
), pp.
50
65
.10.1016/0377-2217(88)90006-9
21.
Green
,
P. E.
, and
Krieger
,
A. M.
,
1996
, “
Individualized Hybrid Models for Conjoint Analysis
,”
Manag. Sci.
,
42
(
6
), pp.
850
867
.10.1287/mnsc.42.6.850
22.
Srinivasan
, V
.
, and
Su Park
,
C.
,
1998
, “
Surprising Robustness of the Self-Explicated Approach to Customer Preference Structure Measurement
,”
J. Market.
,
34
(
2
), pp.
286
291
.
23.
Becker
,
C.
, and
Scholl
,
A.
,
2006
, “
A Survey on Problems and Methods in Generalized Assembly Line Balancing
,”
Eur. J. Oper. Res.
,
168
(
3
), pp.
694
715
.10.1016/j.ejor.2004.07.023
24.
Rekiek
,
B.
,
Dolgui
,
A.
,
Delchambre
,
A.
, and
Braicu
,
A.
,
2002
, “
State of Art Methods for Assembly Line Design
,”
Annu. Rev. Control
,
26
(
2
), pp.
163
174
.10.1016/S1367-5788(02)00027-5
25.
Koren
,
Y.
, and
Shpitalni
,
M.
,
2010
, “
Design of Reconfigurable Manufacturing Systems
,”
ASME J. Manuf. Sci. E.
,
29
(
4
), pp.
130
141
.
26.
Rekiek
,
B.
,
De Lit
,
P.
, and
Delchambre
,
A.
,
2000
, “
Designing Mixed-Product Assembly Lines
,”
IEEE Trans. Robot. Autom.
,
16
(
3
), pp.
268
280
.10.1109/70.850645
27.
Thomopoulos
,
N.
,
1967
, “
Line Balancing-Sequencing for Mixed-Model Assembly
,”
Manag. Sci.
,
14
(
2
), pp.
B59
B75
.10.1287/mnsc.14.2.B59
28.
Thomopoulos
,
N.
,
1970
, “
Mixed Model Line Balancing With Smoothed Station Assignments
,”
Manag. Sci.
,
16
(
9
), pp.
593
603
.10.1287/mnsc.16.9.593
29.
Abdi
,
M. R.
, and
Labib
,
A. W.
,
2004
, “
Grouping and Selecting Products: The Design Key of Reconfigurable Manufacturing Systems (RMSs)
,”
Int. J. Prod. Res.
,
42
(
3
), pp.
521
546
.10.1080/00207540310001613665
30.
De Lit
,
P.
,
Delchambre
,
A.
, and
Henrioud
,
J.
,
2003
, “
An Integrated Approach for Product Family and Assembly System Design
,”
IEEE Trans. Robot. Autom.
,
19
(
2
), pp.
324
334
.10.1109/TRA.2003.808853
31.
Stadzisz
,
P. C.
, and
Henrioud
,
J. M.
,
1998
, “
An Integrated Approach for the Design of Multi-product Assembly Systems
,”
Comput. Ind.
,
36
(
1
), pp.
21
29
.10.1016/S0166-3615(97)00094-8
32.
Michalek
,
J.
,
Ceryan
,
O.
,
Papalambros
,
P.
, and
Koren
,
Y.
,
2005
, “
Manufacturing Investment and Allocation in Product Line Design Decision Making
,”
Proc. International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Long Beach, CA
.
33.
Jiao
,
J.
, and
Zhang
,
Y.
,
2005
, “
Product Portfolio Planning With Customer-Engineering Interaction
,”
IIE Trans.
,
37
(
9
), pp.
801
814
.10.1080/07408170590917011
34.
Hernandez
,
G.
,
Allen
,
J.
,
Simpson
,
T.
,
Bascaran
,
E.
,
Avila
,
L.
, and
Salina
,
F.
,
2001
, “
Robust Design of Families of Products With Production Modeling and Evaluation
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
183
190
.10.1115/1.1359786
35.
Raman
,
N.
, and
Chhajed
,
D.
,
1995
, “
Simultaneous Determination of Product Attributes and Prices and Product Processes in Product-Line Design
,”
J. Operations Manage.
,
12
(
3
), pp.
187
204
.10.1016/0272-6963(95)00013-I
36.
Xu
,
Z.
, and
Liang
,
M.
,
2007
, “
Integrated Planning for Product Module Selection and Assembly Line Design/Reconfiguration
,”
Int. J. Prod. Res.
,
44
(
11
), pp.
2091
2117
.10.1080/00207540500357146
37.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2007
, “
Concurrent Product Portfolio Planning and Mixed Product Assembly Line Balancing
,”
Chin. J. Mech. Eng.
,
20
(
1
), pp.
96
99
.10.3901/CJME.2007.01.096
38.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor
.
39.
Leu
,
Y.
,
Matheson
,
L. A.
, and
Rees
,
L. P.
,
1996
, “
Assembly Line Balancing Using Genetic Algorithms With Heuristic-Generated Initial Populations and Multiple Evaluation Criteria
,”
Decision Sci.
,
25
(
4
), pp.
581
606
.10.1111/j.1540-5915.1994.tb01861.x
40.
Balakrishnan
,
P. V.
, and
Jacob
,
V. S.
,
1996
, “
Genetic Algorithms for Product Design
,”
Manage. Sci.
,
42
(
8
), pp.
1105
1117
.10.1287/mnsc.42.8.1105
You do not currently have access to this content.