Kriging is used extensively as a metamodel in multidisciplinary design optimization. The correlation matrix used in Kriging metamodeling frequently becomes ill-conditioned. Therefore different numerical methods used to solve the Kriging equations affect the search for the optimum Kriging parameters and the ability of the Kriging surface to accurately interpolate known data points. We illustrate this by firstly computing the inverse of the correlation matrix in the Kriging equations, and secondly by solving the systems of equations using decomposition and back substitution, thereby avoiding the inversion of the correlation matrix. Our results clearly show that by decomposing and back substituting, the interpolation accuracy is maintained for significantly higher condition numbers. We then show that computing the natural logarithm of the determinant using additive calculations as opposed to multiplicative calculations significantly reduces numerical underflow errors encountered when searching for the optimum Kriging parameters. Although the effect of decomposition and back substitution are known, and the underflow difficulties when computing the natural logarithm of the determinant of the correlation matrix has been mentioned in passing in Kriging literature, this work clearly quantifies and reinforces these methods, hopefully for the benefit of researchers entering the field.

References

References
1.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.10.2514/1.8650
2.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
,
1992
, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
,
34
(
1
), pp.
15
25
.10.2307/1269548
3.
Booker
,
A. J.
,
Dennis
,
J. E.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
,
1999
, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Multidiscip. Optim.
,
17
, pp.
1
13
.10.1007/BF01197708
4.
Martin
,
J. D.
,
2009
, “
Computational Improvements to Estimating Kriging Metamodel Parameters
,”
ASME J. Mech. Design
,
131
,
084501
.10.1115/1.3151807
5.
Yamazaki
,
W.
,
Rumpfkeil
,
M. P.
, and
Mavriplis
,
D. J.
,
2010
, “
Design Optimization Utilizing Gradient/Hessian Enhanced Surrogate Model
,” AIAA Paper No. 2010-4363.
6.
Ranjan
,
P.
,
Haynes
,
R.
, and
Karsten
,
R.
,
2010
, “
Gaussian Process Models and Interpolators for Deterministic Computer Simulators
,” e-print arXiv:cond.mat/1003.1315v2.
7.
Dwight
,
R. P.
, and
Han
,
Z.
,
2009
, “
Efficient Uncertainty Quantification Using Gradient-Enhanced Kriging
,” AIAA Paper No. 2009-2276.
8.
Laurenceau
,
J.
, and
Sagaut
,
P.
,
2008
, “
Building Efficient Response Surfaces of Aerodynamic Functions With Kriging and Cokriging
,”
AIAA J.
,
46
(
2
), pp.
498
507
.10.2514/1.32308
9.
Simpson
,
T. W.
,
1998
, “
A Concept Exploration Method for Product Family Design
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
10.
MATLAB 7.14
,
2012
, The Mathworks Inc, Natick, MA.
11.
Gentle
,
J. E.
,
2007
,
Matrix Algebra: Theory, Computations, and Applications in Statistics
,
Springer
,
New York
.
12.
Ciarlet
,
P. G.
,
1989
,
Introduction to Numerical Linear Algebra and Optimization
,
Cambridge University
,
Cambridge
.
13.
Anderson
,
E.
,
Bai
,
Z.
,
Bischof
,
C.
,
Blackford
,
S.
,
Demmel
,
J.
,
Dongarra
,
J.
,
Du Croz
,
J.
,
Greenbaum
,
A.
,
Hammarling
,
S.
,
McKenney
,
A.
, and
Sorensen
,
D.
,
1999
,
LAPACK Users guide, 3rd ed.
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
14.
IEEE
,
2008
,
IEEE Standard 754-2008: IEEE Standard for Floating-Point Arithmetic
,
IEEE
,
New York
.
15.
Rust
,
B. W.
,
1994
, “
Perturbation Bounds for Linear Regression Problems
,”
Comput. Sci. Stat.
,
26
, pp.
965
984
.
16.
Johansson
,
F.
2011, “
mpmath: A Python Library for Arbitrary-Precision Floating-Point Arithmetic (version 0.14)
,” http://code.google.com/p/mpmath/
17.
Hock
,
W.
, and
Schittkowski
,
K.
,
1981
, “
Test Examples for Nonlinear Programming Code
,”
Lecture Notes in Economical and Mathematical Systems
, Vol. 187,
Springer-Verlag
,
Berlin Heidelberg New York
.
18.
Johannson
,
F.
, and the MPMATH Development Team, 2010, Version 0.14.
You do not currently have access to this content.