Growing concerns from customers and the government about product disposal highlight the necessity of improving product take-back systems to retain the embedded values in disposed products. Progress has been made toward minimizing the cost of the end-of-life (EOL) processes. While some progress has been made in recovering end-of-life value through decision making in the early design stage, contradictive objectives make it difficult to simultaneously optimize initial sales profits and EOL value. In this paper, a mathematical model is developed to integrate end-of-life recovery value considerations with product design decisions. The improvement of component reuse value or recycling value is achieved by linking design decisions in the early design stage with end-of-life decisions in order to maximize total product value across the span of product life cycle. A matrix based representation that can group components into several end-of-life modules with the same end-of-life decisions is also presented. The results are discussed to compare different design alternatives to understand their influence on net present product lifecycle value. The original contribution here is the simultaneous consideration of profits from initial and returned product sales, resulting from consumer demand as a function of heterogeneous preferences for the product attribute set. In order to estimate consumer demand resulting from discrete choices made by individuals, a random coefficient, mixed logit model was employed. The proposed method is illustrated through a cell phone example of product design decisions and end-of-life strategies.

References

References
1.
The European Parliament and the Council of European Union
,
2003
, “
Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste Electrical and Electronic Equipment (WEEE)
,”
Official Journal of the European Union, No. L037
, pp.
0024
0039
.
2.
Lambert
,
A.
, and
Gupta
,
S. M.
,
2005
,
Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling
,
CRC
,
Boca Raton, Florida
.
3.
Lee
,
D.
,
Kang
,
J. G.
, and
Xirouchakis
,
P.
,
2001
, “
Disassembly Planning and Scheduling: Review and Further Research
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
5
), pp.
695
709
.10.1243/0954405011518629
4.
Giudice
,
F.
, and
Fargione
,
G.
,
2007
, “
Disassembly Planning of Mechanical Systems for Service and Recovery: A Genetic Algorithms Based Approach
,”
J. Intell. Manuf.
,
18
(
3
), pp.
313
329
.10.1007/s10845-007-0025-9
5.
Peng
,
Q.
, and
Chung
,
C.
,
2008
, “
Selected Disassembly Planning for Product Maintainability
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference DETC2007
, Vol.
4
, pp.
999
1006
.
6.
Lee
,
D. H.
,
Xirouchakis
,
P.
, and
Zust
,
R.
,
2002
, “
Disassembly Scheduling With Capacity Constraints. Pdf
,”
CIRP Ann: Manuf. Technol.
,
51
(
1
), pp.
387
390
.10.1016/S0007-8506(07)61543-1
7.
Pnueli
,
Y.
, and
Zussman
,
E.
,
1997
Evaluating the End-of-Life Value of a Product and Improving it by Redesign
,”
Int. J. Prod. Res.
,
35
(
4
), pp.
921
942
.10.1080/002075497195452
8.
Bras
,
B.
, and
Hammond
,
R.
,
1996
, “
Towards Design for Remanufacturing—Metrics for Assessing Remanufacturability
,”
Proceedings of the 1st International Workshop on Reuse
, pp.
5
22
.
9.
Ijomah
,
W. L.
,
McMahon
,
C. A.
,
Hammond
,
G. P.
, and
Newman
,
S. T.
,
2007
, “
Development of Design for Remanufacturing Guidelines to Support Sustainable Manufacturing
,”
Rob. Comput.-Integr. Manufact.
,
23
(
6
), pp.
712
719
.10.1016/j.rcim.2007.02.017
10.
Seliger
,
G.
,
Kriwet
,
A.
, and
Zussmann
,
E.
,
1994
, “
Disassembly-Oriented Assessment Methodology to Support Design for Recycling
,”
CIRP Ann: Manuf. Technol.
,
43
(
1
), pp.
9
14
.10.1016/S0007-8506(07)62152-0
11.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manage.
,
91
(
3
), pp.
563
91
.10.1016/j.jenvman.2009.09.037
12.
Ishii
,
K.
,
Eubanks
,
C. F.
, and
Di Marco
,
P.
,
1994
, “
Design for Product Retirement and Material Life-Cycle
,”
Mater. Des.
,
15
(
4
), pp.
225
233
.10.1016/0261-3069(94)90007-8
13.
Newcomb
,
P. J.
,
Bras
,
B.
, and
Rosen
,
D. W.
,
1998
, “
Implications of Modularity on Product Design for the Life Cycle
,”
J. Mech. Des.
,
120
(
3
), pp.
483
490
.10.1115/1.2829177
14.
Fukushige
,
S.
,
Tonoike
,
K.
,
Inoue
,
Y.
, and
Umeda
,
Y.
,
2009
Scenario Based Modularization and Evaluation for Product Lifecycle Design
,”
Proceedings of ASME International Design Engineering Technical Conferences
.
15.
Li
,
H.
, and
Azarm
,
S.
,
2002
, “
An Approach for Product Line Design Selection under Uncertainty and Competition
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
385
392
.10.1115/1.1485740
16.
Kwak
,
M.
,
Hong
,
Y. S.
, and
Cho
,
N. W.
,
2007
, “
Eco-Architecture Analysis as a Method of End-of-life Decision Making for Sustainable Product Design
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
17.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
J. Mech. Des.
,
132
(
4
), p.
041002
.10.1115/1.4001207
18.
Kwak
,
M.
, and
Kim
,
H. M.
,
2010
, “
Evaluating End-of-Life Recovery Profit by a Simultaneous Consideration of Product Design and Recovery Network Design
,”
J. Mech. Des.
,
132
(
7
), p.
171001
.
19.
McIntosh
,
M. W.
, and
Bras
,
B. A.
,
1998
, “
Determining the Value of Remanufacture in an Integrated Manufacturing-Remanufacturing Organization
,”
Proceedings of the ASME Design for Manufacture Conference, ASME Design Technical Conferences and Computers in Engineering Conference
,
Atlanta, Georgia
,
ASME
.
20.
Whitefoot
,
K.
,
Grimes-Casey
,
H.
,
Girata
,
C.
,
Morrow
,
R.
,
Winebrake
,
J.
,
Keoleian
,
G.
, and
Skerlos
,
S.
,
2011
, “
Consequential Life Cycle Assessment With Market-Driven Design
,”
J. Ind. Ecol.
,
15
(
5
), pp.
726
742
.10.1111/j.1530-9290.2011.00367.x
21.
Train
,
K.
,
2009
,
Discrete Choice Methods With Simulation
,
2nd ed.
,
Cambridge University Press
,
New York
.
22.
Michalek
,
J. J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
,
2006
, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.10.1115/1.2336252
23.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T.
,
2009
, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
,
47
(
1
), pp.
71
104
.10.1080/00207540701393171
24.
Pandey
,
V.
, and
Thurston
,
D. L.
,
2007
, “
Copulas for Demand Estimation for Portfolio Reuse Design Decisions
,”
Proceedings of the ASME International Design Engineering Technical Conferences
.
25.
Cardell
,
N. S.
, and
Dunbar
,
F. C.
,
1980
, “
Measuring the Societal Impacts of Automobile Downsizing
,”
Transp. Res. Part A
,
14
(
5–6
), pp.
423
434
.10.1016/0191-2607(80)90060-6
26.
Boyd
,
J. H.
, and
Mellman
,
R. E.
,
1980
, “
The Effect of Fuel Economy Standards on the U.S. Automotive Market: An Hedonic Demand Analysis
,”
Transp. Res. Part A
,
14
(
5–6
), pp.
367
378
.10.1016/0191-2607(80)90055-2
27.
Hensher
,
D. A.
, and
Greene
,
W. H.
,
2002
, “
The Mixed Logit Model: The State of Practice
,”
Transportation
,
30
(
2
), pp.
133
176
.10.1023/A:1022558715350
28.
González
,
B.
, and
Anders-Diaz
,
B.
,
2005
, “
A Bill of Materials-based Approach for End-of-Life Decision Making in Design for the Environment
,”
Int. J. Prod. Res.
,
43
(
10
), pp.
2071
2099
.10.1080/00207540412331333423
29.
Lai
,
X.
, and
Gershenson
,
J. K.
,
2009
, “
DSM-Based Product Representation for Retirement Process-Based Modularity
,”
Proceedings of ASME International Design Engineering Technical Conferences
.
30.
Kroll
,
E.
, and
Carver
,
B. S.
,
1999
, “
Disassembly Analysis Through Time Estimation and Other Metrics
,”
Rob. Comput.-Integr. Manufact.
,
15
(
3
), pp.
191
200
.10.1016/S0736-5845(99)00026-5
31.
Duflou
,
J.
,
Seliger
,
G.
,
Kara
,
S.
,
Umeda
,
Y.
,
Ometto
,
A.
, and
Willems
,
B.
,
2008
, “
Efficiency and Feasibility of Product Disassembly: A Case-Based Study
,”
CIRP Ann: Manuf. Technol.
,
57
(
2
), pp.
583
600
.10.1016/j.cirp.2008.09.009
32.
Yu
,
T.-L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.10.1007/s00163-007-0030-1
33.
Kara
,
S.
,
Mazhar
,
M. I.
, and
Kaebernick
,
H.
,
2004
, “
Lifetime Prediction of Components for Reuse: An Overview
,”
Int. J. Environ. Technol. Manage.
,
4
(
4
), pp.
323
348
.10.1504/IJETM.2004.005720
34.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2007
, “
What Gets Recycled: An Information Theory Based Model for Product Recycling
,”
Environ. Sci. Technol.
,
41
(
21
), pp.
7543
7550
.10.1021/es062254b
35.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
J. Mech. Des.
,
120
(
4
), pp.
653
658
.10.1115/1.2829328
36.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
J. Mech. Des.
,
125
(
3
), pp.
490
497
.10.1115/1.1587156
37.
Keeney
,
R. L.
, and
Raiffa
,
H.
,
1993
,
Decisions with Multiple Objectives–Preferences and Value Tradeoffs
,
Cambridge University Press
,
Cambridge, New York
.
38.
http://
www.collectivegood.com/
. [Accessed: 01-Jan-2012].
40.
Croissant
,
Y.
,
2011
, “Estimation of Multinomial Logit Models in R: The mlogit Packages.”
41.
Croissant
,
Y.
,
2011
, “Package ‘mlogit’,” 0.2-2. Available at http://cran.r-project.org/web/packages/mlogit/mlogit.pdf, accessed 2011.
42.
Tucker
,
C. S.
, and
Kim
,
H. M.
,
2008
, “
Optimal Product Portfolio Formulation by Merging Predictive Data Mining With Multilevel Optimization
,”
J. Mech. Des.
,
130
(
4
), p.
041103
.10.1115/1.2838336
43.
Erbis
,
E.
,
Mcgovern
,
S. M.
, and
Gupta
,
S. M.
,
2004
, “
Disassembly Sequencing Problem: A Case Study of a Cell Phone
,”
Proceedings of the SPIE International Conference on Environmentally Conscious Manufacturing IV
, pp.
43
52
.
44.
Shiau
,
C. S.
,
Tseng
,
I. H.
,
Heutchy
,
A. W.
, and
Michalek
,
J.
,
2007
, “
Design Optimization of a Laptop Computer Using Aggregated and Mixed Logit Demand Models with Consumer Survey Data
,”
Proceedings of the ASME International Design Engineering Technical Conferences
.
45.
X-bit labs
,
2012
, “
Contemporary LCD Monitor Parameters and Characteristics
,” Available: http://www.xbitlabs.com/articles/monitors/display/lcd-guide.html, (accessed: 01-Jan-
2012
).
46.
Monteiro
,
M. R.
,
Moreira
,
D. G. G.
,
Chinelatto
,
M. A.
,
Nascente
,
P. A. P.
, and
Alcantara
,
N. G.
,
2007
, “
Characterization and Recycling of Polymeric Components Present in Cell Phones
,”
J. Polym. Environ.
,
15
(
3
), pp.
195
199
.10.1007/s10924-007-0060-9
You do not currently have access to this content.