A type of modified-hourglass worm gear drive, frequently called type-II worm gearing for short, has various favorable meshing features. Its sole shortcoming is the undercutting of the worm wheel. By adopting a slight modification, this problem can be overcome due to the removal of a part of one subconjugate area containing the curvature interference limit line. To measure how effectively the undercutting is avoided, a strategy to determine the meshing point in the most severe condition is proposed for a type-II worm drive. The strategy presented consists of two steps. The first step is to establish a system of nonlinear equations in five variables in accordance with the theory of gearing. The second step is to solve the system of nonlinear equations by a numerical iteration method to ascertain the meshing point required. A numerical example is presented to verify the validity and feasibility of the proposed scheme.

References

References
1.
Research group of worm drive in Chongqing University
,
1978
, “
Investigation and Application of Plane Double-Enveloping Toroidal Worm Drive
,”
J. Chongqing Univ.
,
4
, pp.
1
18
.
2.
Dong
,
X.
,
2004
,
Design and Modification of Hourglass Worm Drives
,
China Machine Press
,
Beijing
.
3.
Zhao
,
Y.
,
Su
,
D.
,
Zhang
,
Z.
,
2010
, “
Meshing Analysis and Technological Parameters Selection of Dual Tori Double-Enveloping Toroidal Worm Drive
,”
Mech. Mach. Theory
,
45
, pp.
1269
1285
.10.1016/j.mechmachtheory.2010.04.004
4.
Qi
,
L.
,
Zhang
,
Y.
,
Li
,
S.
,
Dong
,
X.
,
Hu
,
S.
,
1987
,
Worm Drives Design
,
China Machine Press
,
Beijing
.
5.
Zhou
,
L.
,
2005
,
Modification Principle and Manufacture Technology for Hourglass Worm Drives
,
National University of Defense Technology Press
,
Changsha
.
6.
Sakai
,
T.
,
Maki
,
M.
,
Tamura
,
1980
, “
Globoid Worm Gear Generating Method
,” U.S. Patent No. 4,184,796.
7.
Umezono
,
S.
,
Maki
,
M.
,
1991
, “
Globoid Worm Gear Speed Reduction Apparatus
,” U.S. Patent No. 5,018,403.
8.
Zhao
,
Y.
, and
Zhang
,
Z.
,
2010
, “
Computer Aided Analysis on the Meshing Behavior of a Height-Modified Dual-Torus Double-Enveloping Toroidal Worm Drive
,”
Comput.-Aided Des.
,
42
, pp.
1232
1240
.10.1016/j.cad.2010.08.007
9.
Zhao
,
Y.
,
Su
,
D.
,
Zhang
,
Z.
,
Wei
,
W.
,
Dong
,
X.
,
2010
, “
Mesh Theory of Angle Modified Dual Tori Double-Enveloping Toroidal Worm Drive
,”
Sci. China Technol. Sci.
,
53
, pp.
1913
1927
.10.1007/s11431-009-3156-8
10.
Zhao
,
Y.
, and
Zhang
,
Z.
,
2011
, “
Tooth Flank Modification Theory of Dual-Torus Double-Enveloping Hourglass Worm Drives
,”
Comput.-Aided Des.
,
43
, pp.
1535
1544
.10.1016/j.cad.2011.06.024
11.
Zhao
,
Y.
,
Wei
,
W.
,
Dong
,
X.
,
Li
,
H.
,
2010
, “
A Kind of Dual Tori Double-Enveloping Toroidal Worm Pair
,” China Patent, ZL 200920084461.6.
12.
Dong
,
X.
,
1989
,
Theoretical Foundation of Gear Meshing
,
China Machine Press
,
Beijing
.
13.
Chen
,
H.
,
Duan
,
Z.
,
Wu
,
H.
,
Liu
,
J.
,
2006
, “
Study on the General Principle of Normal Circular-Arc Gear Transmission
,”
Mech. Mach. Theory
,
41
, pp.
1424
1442
.10.1016/j.mechmachtheory.2006.01.016
14.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
2nd ed.
,
Cambridge University Press
,
UK
.
15.
Zhao
,
Y.
, and
Wu
,
T.
,
2011
, “
Numerical Method of Determining the Curvature Interference Limit Curve for Modified Hourglass Worm Pairs
,”
Appl. Mech. Mater.
,
86
, pp.
352
356
.10.4028/www.scientific.net/AMM.86.352
You do not currently have access to this content.