Iterative algorithms are widely applied in reliability analysis and design optimization. Nevertheless, phenomena of failed convergence, such as periodic oscillation, bifurcation, and chaos, are oftentimes observed in iterative procedures of solving some nonlinear problems. In the present paper, the essential causes of numerical instabilities including periodic oscillation and chaos of iterative solutions are revealed by the eigenvalue-based stability analysis of iterative schemes. To understand and control these instabilities, the stability transformation method (STM), which is capable of tackling numerical instabilities of iterative algorithms in reliability analysis and design optimization, is proposed. Finally, several benchmark examples of convergence control of PMA (performance measure approach) for probabilistic analysis and the SORA (sequential optimization and reliability assessment) for reliability-based design optimization (RBDO) are presented. The observations from the benchmark examples indicate that the STM is a promising approach to achieve convergence control for iterative algorithms in reliability analysis and design optimization.

References

References
1.
Yang
,
D. X.
,
Li
,
G.
, and
Cheng
,
G. D.
,
2006
, “
Convergence Analysis of First Order Reliability Method Using Chaos Theory
,”
Comput. Struct.
,
84
(
8–9
), pp.
563
571
.10.1016/j.compstruc.2005.11.009
2.
Yang
,
D. X.
,
2010
, “
Chaos Control for Numerical Instability of First Order Reliability Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
10
), pp.
3131
3141
.10.1016/j.cnsns.2009.10.018
3.
Yang
,
D. X.
, and
Yi
,
P.
,
2009
, “
Chaos Control of Performance Measure Approach for Evaluation of Probabilistic Constraints
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
83
92
.10.1007/s00158-008-0270-3
4.
Yi
,
P.
, and
Yang
,
D. X.
,
2009
, “
Convergence Control of the Iterative Procedure for Performance-Measure-Based Probabilistic Structural Design Optimization
,”
Eng. Optim.
,
41
(
12
), pp.
1145
1161
.10.1080/03052150902943012
5.
Yang
,
D. X.
, and
Yang
,
P. X.
,
2010
, “
Numerical Instabilities and Convergence Control for Convex Approximation Methods
,”
Nonlinear Dyn.
,
61
(
4
), pp.
605
622
.10.1007/s11071-010-9674-x
6.
Yang
,
D. X.
, and
Li
,
G.
,
2009
, “
Chaotic Dynamics Analysis and Control of Iterative Procedure of Capacity Spectrum Method
,”
Soil Dyn. Earthquake Eng.
,
29
(
3
), pp.
459
468
.10.1016/j.soildyn.2008.05.005
7.
MaCauley
,
J. L.
,
1993
,
Chaos, Dynamics and Fractals
,
Cambridge University Press
,
Cambridge
.
8.
Ott
,
E.
,
2002
,
Chaos in Dynamical Systems
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
9.
Robinson
,
R. C.
,
2004
,
An Introduction to Dynamical System: Continuous and Discrete
,
Pearson Education, Inc
,
New York
.
10.
Moon
,
F. C.
,
2004
,
Chaotic Vibrations: An Introduction for Applied Scientists and Engineers
,
John Wiley & Sons Inc
,
New Jersey
.
11.
Aoues
,
Y.
, and
Chateauneuf
,
A.
,
2010
, “
Benchmark Study of Numerical Methods for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
41
, pp.
277
294
.10.1007/s00158-009-0412-2
12.
Valdebenito
,
M. A.
, and
Schueller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscip. Optim.
,
42
, pp.
645
663
.10.1007/s00158-010-0518-6
13.
Du
,
X. P.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
J. Mech. Des.
,
126
(
2
), pp.
225
233
.10.1115/1.1649968
14.
Liu
,
P. L.
, and
Kiureghian
,
A. D.
,
1991
, “
Optimization Algorithms for Structural Reliability
,”
Struct. Safety
,
9
, pp.
161
177
.10.1016/0167-4730(91)90041-7
15.
Wang
,
L. P.
, and
Grandhi
,
R. V.
,
1994
, “
Efficient Safety Index Calculation for Structural Reliability Analysis
,”
Comput. Struct.
,
52
(
1
), pp.
103
111
.10.1016/0045-7949(94)90260-7
16.
Wang
,
L. P.
, and
Grandhi
,
R. V.
,
1996
, “
Safety Index Calculation Using Intervening Variables for Structural Reliability Analysis
,”
Comput. Struct.
,
59
(
6
), pp.
1139
1148
.10.1016/0045-7949(96)00291-X
17.
Melchers
,
R. E.
,
1999
,
Structural Reliability Analysis and Prediction
,
2nd ed.
,
Ellis Horwood Limited Publishers
,
Chichester
.
18.
Lee
,
J. O.
,
Yang
,
Y. S.
, and
Ruy
,
W. S.
,
2002
, “
A Comparative Study on Reliability-Index and Target-Performance-Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
,
80
, pp.
257
269
.10.1016/S0045-7949(02)00006-8
19.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability Based Design Optimization
,”
J. Mech. Des.
,
125
(
3
), pp.
221
232
.10.1115/1.1561042
20.
Du
,
X. P.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
J. Mech. Des.
,
126
(
7
), pp.
562
570
.10.1115/1.1759358
21.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value Method
,”
Struct. Multidiscip. Optim.
,
29
, pp.
134
148
.10.1007/s00158-004-0452-6
22.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
.10.2514/1.6648
23.
Schmelcher
,
P.
, and
Diakonos
,
F. K.
,
1997
, “
Detecting Unstable Periodic Orbits of Chaotic Dynamical Systems
,”
Phys. Rev. Lett.
,
78
(
25
), pp.
4733
4736
.10.1103/PhysRevLett.78.4733
24.
Pingel
,
D.
,
Schmelcher
,
P.
, and
Diakonos
,
F. K.
,
2004
, “
Stability Transformation: A Tool to Solve Nonlinear Problems
,”
Phys. Rep.
,
400
, pp.
67
148
.10.1016/j.physrep.2004.07.003
25.
Du
,
X. P.
, and
Chen
,
W.
,
2001
, “
A Most Probable Point-Based Method for Efficient Uncertainty Analysis
,”
J. Des. Manuf. Autom.
,
1
(
1–2
), pp.
47
65
.10.1080/15320370108500200
26.
Tang
,
Y. F.
,
Chen
,
J. Q.
, and
Wei
,
J. H.
,
2012
, “
A Sequential Algorithm for Reliability-Based Robust Design Optimization Under Epistemic Uncertainty
,”
J. Mech. Des.
,
134
(
1
), 014502, pp.
1
10
.10.1115/1.4005442
You do not currently have access to this content.