A self-aligning coupling is used as a vehicle to show that the Tolerance-Map (T-Map) mathematical model for geometric tolerances can distinguish between related and unrelated actual mating envelopes as described in the ASME/ISO standards. The coupling example illustrates how T-Maps (Patent No. 6963824) may be used for tolerance assignment during design of assemblies that contain non-congruent features in contact. Both worst-case and statistical measures are obtained for the variation in alignment of the axes of the two engaged parts of the coupling in terms of the tolerances. The statistical study is limited to contributions from the geometry of toleranced features and their tolerance-zones. Although contributions from characteristics of manufacturing machinery are presumed to be uniform, the method described in the paper is robust enough to include different types of manufacturing bias in the future. An important result is that any misalignment in the coupling depends only on tolerances, not on any dimension of the coupling.

References

References
1.
American National Standard ASME Y14.5M
,
2009
,
Dimensioning and Tolerancing
,
The American Society of Mechanical Engineers
,
New York
.
2.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
, pp.
609
622
.10.1115/1.1497362
3.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2001
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
, pp.
504
518
.10.1115/1.1701881
4.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2002
, “
Geometric Tolerances: A New Application for Line Geometry and Screws
,”
IMechE J. Mech. Eng. Sci., Part C
,
216
(C
1
), pp.
95
104
.10.1243/0954406021524837
5.
Bhide
,
S.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, “
A New Mathematical Model for Geometric Tolerances as Applied to Axes
,”
Proceedings of ASME Design Technical Conferences
,
Chicago, IL
, #DETC2003/DAC-48736 (CDROM).
6.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Tolerance-Maps Applied to a Point-Line Cluster of Features
,”
ASME J. Mech. Des.
,
29
, pp.
782
792
.
7.
Giordano
,
M.
,
Kataya
,
B.
, and
Samper
,
S.
,
2001
, “
Tolerance Analysis and Synthesis by Means of Clearance and Deviation Spaces
,” Geometric Product Specification and Verification,
Proceedings of the 7th CIRP International Seminar on Computer-Aided Tolerancing
,
P.
Bourdet
and
L.
Mathieu
, eds.,
Ecole Norm. Supérieure
, Cachan, France, April 24–25, Kluwer, Dordrecht, pp.
345
354
.
8.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones
,” Global Consistency of Tolerances,
Proceedings of the 6th CIRP International Seminar on Computer-Aided Tolerancing
,
F.
vanHouten
and
H.
Kals
, eds.,
University of Twente
,
Enschede, Netherlands
, Mar. 22–24, Kluwer, pp.
177
186
.
9.
Roy
,
U.
, and
Li
,
B.
,
1999
, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects–I: Form Tolerance
,”
Comput.-Aided Des.
,
30
, pp.
151
161
.10.1016/S0010-4485(97)00088-2
10.
Roy.
,
U.
, and
Li.
,
B.
,
1999
, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects–II: Size, Orientation, and Position Tolerances
,”
Comput.-Aided Des.
,
31
, pp.
273
285
.10.1016/S0010-4485(99)00028-7
11.
Pasupathy
,
T. M. K.
,
Morse
,
E. P.
, and
Wilhelm
,
R. G.
,
2003
, “
A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zones
,”
J. Comput. Inf. Sci. Eng.
,
3
, pp.
64
75
.10.1115/1.1572519
12.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.10.1080/00207540210128242
13.
Mathieu
,
L.
, and
Villeneuve
,
F.
,
2010
,
Geometric Toleracing of Products
,
Wiley
,
New York
, (Adapted and updated from Tolerancement geometrique des produits, 2007, Hermes Science/Lavoisier).
14.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
,
1994
, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
,
6
, pp.
191
210
.10.1007/BF01608399
15.
Lee
S.
, and
Yi
,
C.
,
1998
, “
Statistical Representation and Computation of Tolerance and Clearance for Assemblability Evaluation
,”
Robotica
,
16
, pp.
251
264
.10.1017/S0263574798000344
16.
Lehtihet
,
E. A.
, and
Gunasena
,
U. N.
,
1988
, “
Models for the Position and Size Tolerance of a Single Hole
,”
Manufacturing Metrology, ASME PED-29, Presented at the Winter Annual Meeting of the ASME
,
Chicago, Illinois
, November, pp.
49
63
.
17.
Teissandier
,
D.
,
Couétard
,
Y.
, and
Gérard
,
A.
,
1999
, “
A Computer Aided Tolerancing Model: Proportioned Assembly Clearance Volume
,”
Comput.-Aided Des.
,
31
, pp.
805
817
.10.1016/S0010-4485(99)00055-X
18.
Wu
,
W.
, and
Rao
,
S. S.
,
2004
, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
,
126
, pp.
581
592
.10.1115/1.1760775
19.
Giordano
,
M.
,
Petit
,
J.
, and
Samper
,
S.
,
2003
, “
Minimum Clearance for Tolerance Analysis of a Vacuum Pump
,”
CD-ROM, 8th CIRP Seminar on Computer Aided Tolerancing
,
Charlotte, NC
.
20.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
The Effects of Different Specifications on the Tolerance-Maps for an Angled Face
,”
Proceedings of American Society of Mechanical Engineering—Design Engineering Technical Conference
,
Salt Lake City, Utah
,
Sept. 28–Oct. 2
,
Paper No. DAC-57199
.
21.
Banchoff
,
T. F.
,
1996
,
Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions
,
Scientific American Library
,
New York
.
22.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2010
, “
Statistical Tolerance Allocation for Tab-Slot Assemblies Using Tolerance-Maps
,”
J. Comput. Inf. Sci. Eng.
,
10
(
1
), p.
011005
.10.1115/1.3249576
23.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2003
,
Theory of Machines and Mechanisms
,
3rd ed.
,
Oxford
,
New York
.
24.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
4
), pp.
347
359
.10.1115/1.2795308
25.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory
,
Oxford University Press
,
Oxford, United Kingdom
.
26.
Banchoff
,
T.
, and
Wermer
,
J.
,
1992
,
Linear Algebra Through Geometry
,
2nd ed.
,
Springer
,
New York
.
27.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2009
, “
Worst-Case Tolerance Analysis of a Self-Aligning Coupling Assembly using Tolerance-Maps
,” Proc., 11th CIRP Int'l Conference on Computer-Aided Tolerancing, ed. F. Villeneuve and M. Giordano, March 26–27, Annecy, France. (CDROM).
You do not currently have access to this content.