To avoid failures in the marketplace, the control of the risks in product innovation and the reduction of the innovation cycles require fast and valid assessments from customers. An interactive genetic algorithm (IGA) is proposed for eliciting users' perceptions about the shape of a product, in order to stimulate creativity and to identify design trends. Interactive users' assessment tests are conducted on virtual products to capture and analyze users' responses. The IGA is interfaced with Computer Aided Design (CAD) software (CATIA V5) to create sets of parameterized designs in real time, which are presented iteratively by a graphical interface to the users for evaluation. After a description of the IGA, a study on the convergence of the IGA is presented. The convergence varies, according to the tuning parameters of the algorithm and the size of the design problem. An experiment was carried out with a set of 45 users on the application case, a dashboard, put forward by Renault. The implementation of the perceptive tests and the analysis of the results are described using hierarchical ascendant classification (HAC) and multivariate analysis. This paper shows how the results of tests using IGA can be used to elicit user perception and to detect design trends.

References

References
1.
Bloch
,
P
.,
1995
, “
Seeking the Ideal Form: Product Design and Consumer Response
,”
J. Marketing
,
59
, pp.
16
29
.10.2307/1252116
2.
Krippendorff
,
K.
, and
Butter
,
R.
,
1984
, “
Product Semantics: Exploring the Symbolic Qualities of Form
,”
J. Ind. Designers Soc. Am.
,
3
(2)
, pp.
4
9
.
3.
Hsu
,
S. H.
,
Chuang
,
M. C.
, and
Chang
,
C. C.
,
2000
, “
A Semantic differential Study of Designers' and Users' Product Form Perception
,”
Int. J. Ind. Ergon.
,
25
, pp.
375
391
.10.1016/S0169-8141(99)00026-8
4.
Hsiao
,
S. W.
,
2002
, “
Concurrent Design Method for Developing a New Product
,”
Int. J. Ind. Ergon.
,
29
, pp.
41
55
.10.1016/S0169-8141(01)00048-8
5.
Orsborn
,
S.
,
Boatwright
,
P.
, and
Cagan
,
J.
,
2009
, “
Quantifying Aesthetic Form Preference in a Utility Function
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061001
.10.1115/1.3116260
6.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
, and
Wang
,
N.
,
2009
, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071008
.10.1115/1.3149845
7.
Green
,
P.
,
Carroll
,
J.
, and
Goldberg
,
S.
,
1981
, “
A General Approach to Product Design Optimization Via Conjoint Analysis
,”
J. Marketing
,
43
, pp.
17
35
.10.2307/1251539
8.
Wassenaar
,
H.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
,
2005
, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
, pp.
514
523
.10.1115/1.1897408
9.
Guyon
,
H.
, and
Petiot
,
J.-F.
,
2011
, “
Market Share Predictions: A New Model With Rating-Based Conjoint Analysis
,”
Int. J. Mark. Res.
,
53
(
6
), pp.
831
857
.10.2501/IJMR-53-6-831-857
10.
Lenk
,
P. J.
,
DeSarbo
,
W. S.
,
Green
,
P. E.
, and
Young
,
M. R.
,
1996
, “
Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity From Reduced Experimental Designs
,”
Mark. Sci.
,
15
(
2
), pp.
173
191
.10.1287/mksc.15.2.173
11.
Toubia
,
O.
,
Hauser
,
J.
, and
Simester
,
D.
,
2004
, “
Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis
,”
J. Mark. Res.
,
41
(
1
), pp.
116
131
.10.1509/jmkr.41.1.116.25082
12.
Nagamachi
,
M
.,
1995
, “
Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development
,”
Int. J. Ind. Ergon.
,
15
, pp.
3
11
.10.1016/0169-8141(94)00052-5
13.
Yoshida
,
S.
, and
Aoyama
,
H.
,
2008
, “
Basic Study on Trend Prediction for Style Design
,”
ASME International Design Engineering Technical Conferences
,
Brooklyn, New York
, DETC2008-49574.
14.
Lewis
,
K.
,
Chen
,
W.
, and
Schmidt
,
L.
, eds.,
2006
,
Decision making in Engineering Design
,
ASME Press
,
New York, NY
.
15.
MacDonald
,
E.
,
Lubensky
,
A.
,
Sohns
,
B.
, and
Papalambros
,
P. Y.
,
2009
, “
Product Semantics in Wine Portfolio Optimization
,”
Int. J. Prod. Dev.
,
7
(
1/2
), pp.
73
98
.10.1504/IJPD.2009.022277
16.
Netzer
,
O.
,
Toubia
,
O.
,
Bradlow
,
E. T.
,
Dahan
,
E.
,
Evgeniou
,
T.
,
Feinberg
,
F. M.
,
Feit
,
E. M.
,
Hui
,
S. K.
,
Johnson
,
J.
,
Liechty
,
J. C.
,
Orlin
,
J. B.
, and
Rao
,
V. R.
,
2008
, “
Beyond Conjoint Analysis: Advances in Preference Measurement
,”
Mark. Lett.
,
19
, pp.
337
354
.10.1007/s11002-008-9046-1
17.
Takagi
,
H
.,
2001
, “
Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation
,”
Proc. IEEE
,
89
(
9
), pp.
1275
1296
.10.1109/5.949485
18.
Kim
,
H. S.
, and
Cho
,
S. B.
,
2006
, “
Application of Interactive Genetic Algorithm to Fashion Design
,”
Eng. Des.
,
38
, pp.
224
237
.10.1016/S0952-1976(00)00045-2
19.
Gu
,
Z.
,
Tang
,
M. X.
, and
Frazer
,
J. H.
,
2006
, “
Capturing Aesthetics Intention During Interactive Evolution
,”
Comput.-Aided Des.
,
38
, pp.
224
237
.10.1016/j.cad.2005.10.008
20.
Yannou
,
B.
,
Dihlmann
,
M.
, and
Awedikian
,
R.
,
2008
, “
Evolutive Design of Car Silhouettes
,”
Proceedings of IDETC/CIE 2008
,
August, Brooklyn, NY
, DETC2008-49439.
21.
Kelly
,
J
.,
2008
, “
Interactive Genetic Algorithms for Shape Preference Assessment in Engineering Design
,” Ph.D. thesis, University of Michigan, Ann Arbor, Michigan.
22.
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2010
, “
Design Preference Elicitation, Derivative-Free Optimization and Support Vector Machine Search
,”
Proceedings of IDETC/CIE 2010
, August,
Montreal, Quebec, Canada
, DETC2010-28.
23.
Krishnamachari
,
R. S.
, and
Papalambros
,
P.
,
1997
, “
Optimal Hierarchical Decomposition Synthesis Using Integer Programming
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
440
447
.10.1115/1.2826388
24.
Swait
,
J.
, and
Adamowicz
,
W.
,
2001
, “
The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching
,”
J. Consum. Res.
,
28
, pp.
135
148
.10.1086/321952
25.
Gong
,
D. W.
, and
Pan
,
F. P.
,
2003
, “
Theory and Applications of Adaptive Genetic Algorithms
,” China University of Mining and Technology, Xuzhou/China.
26.
Gong
,
D. W
, and
Guo
,
G. S.
,
2007
, “
Interactive Genetic Algorithms With Interval Fitness of Evolutionary Individuals
,”
Dyn. Contin. Discrete Impulsive Syst.: Ser. B - Math. Anal.
,
14
(
s2
), pp.
446
450
. Available at http://www.iocen.com/upload/201107/20110703145639525.pdf
27.
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2011
, “
A Design Preference Elicitation Query as an Optimization Process
,”
J. Mech. Des.
,
133
, p.
111004
.10.1115/1.4005104
28.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
,
2008
, “
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031401
.10.1115/1.2829879
29.
Tseng
,
I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2011
, “
Learning Stylistic Desires and Generating Preferred Designs of Consumers Using Neural Networks and Genetic Algorithms
,”
ASME IDETC—Design Automation Conference
,
Washington D.C.
,
Aug. 28–31
, DETC2011-48642.
30.
Gong
,
D.
,
Zhou
,
Y.
, and
Li
,
T.
,
2005
, “
Cooperative Interactive Genetic Algorithm Based on User's Preference
,”
Int. J. Inf. Technol.
,
11
(
10
), pp.
1
10
. Available at http://www.lw20.com/201106271090250.Html
31.
Hayashida
,
N.
, and
Takagi
,
H.
,
2002
, “
Acceleration of EC Convergence With Landscape Visualization and Human Intervention
,”
Appl. Soft Comput.
,
1
(
4
), pp.
245
256
.10.1016/S1568-4946(01)00023-0
32.
Pelikan
,
M.
,
Goldberg
,
D. E.
, and
Lobo
,
F. G.
,
2002
, “
A Survey of Optimization by Building and Using Probabilistic Models
,”
Comput. Optim. Appl.
,
21
, pp.
5
20
.10.1023/A:1013500812258
33.
Secretan
,
J.
,
Beato
,
N.
,
D'Ambrosio
,
D. B.
,
Rodriguez
,
A.
,
Campbell
,
A.
,
Folsom-Kovarik
,
J. T.
,
Stanley
,
K. O.
,
2011
, “
Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space
,”
Evol. Comput.
,
19
(
3
), pp.
37
403
.10.1162/EVCO_a_00030
34.
Brintrup
,
A. M.
,
Ramsden
,
J.
, and
Tiwari
,
A.
,
2005
, “
Integrated Qualitativeness in Design by Multi-Objective Optimization and Interactive Evolutionary Computation
,”
The 2005 IEEE Congress on Evolutionary Computation
, Vol.
3
, pp.
2
5
.
35.
Kelly
,
J.
, and
Papalambros
,
P.
,
2007
, “
Use of Shape Preference Information in Product Design
,”
Proceedings of ICED 2007
,
Paris, France
,
Sept
.
36.
Lewis
,
M.
, and
Ruston
,
K.
,
2005
, “
Aesthetic Geometry Evolution in a Generic Interactive Evolutionary Design Framework
,”
New Gener. Comput.
,
23
(
2
), pp.
171
179
.10.1007/BF03037493
37.
Graham
,
I. J.
,
Case
,
K.
, and
Wood
,
R. L.
,
2001
, “
Genetic Algorithms in Computer-Aided Design
,”
J. Mater. Process. Technol.
,
117
, pp.
216
221
.10.1016/S0924-0136(01)01144-X
38.
Poirson
,
E.
,
Petiot
,
J.-F.
,
Leroy
,
T.
,
Aliouat
,
E.
,
Boivin
,
L.
, and
Blumenthal
,
D.
,
2009
, “
Intégration d'évaluations Clients Pour Favoriser L'innovation—Application au Design de Planches de bord Automobile
,”
Proceedings of Confere’09 - 02 – 03 juillet 2009
,
Marrakech, MAROC
.
39.
Poirson
,
E.
,
Petiot
,
J.-F.
,
Benabes
,
J.
,
Boivin
,
L.
, and
Blumenthal
,
D.
,
2011
, “
Detecting Design Trends Using Perceptive Tests Based on an Interactive Genetic Algorithm
,”
Proceedings of IDETC/DTM 2011
,
Washington, DC
,
Aug. 28–31
.
40.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization & Machine Learning
,
Addison-Wesley Publishing Company
,
Boston, MA
.
41.
Kelly
,
J.
,
Papalambros
,
P.
,
Wakefield
,
G.
,
2005
, “
The Development of a Tool for the Preference Assessment of the Visual Aesthetics of an Object Using Interactive Genetic Algorithms
,”
9th Generative Art Conference
,
GA
.
42.
Qian
,
L.
, and
Ben-Arieh
,
D.
,
2009
, “
Joint Pricing and Platform Configuration in Product Family Design With Genetic Algorithm
,”
Proceedings of IDETC/CIE 2009
, Aug.,
San Diego, CA
, DETC2009-86110.
43.
Poirson
,
E.
,
Petiot
,
J.-F.
,
Aliouat
,
E.
,
Boivin
,
L.
, and
Blumenthal
,
D.
,
2010
, “
Interactive User Tests to Enhance Innovation; Application to Car Dasboard Design
,”
International Conference on Kansei Engineering and Emotion Research KEER2010
,
Paris
,
Mar. 2–4
.
44.
Papalambros
,
P. Y.
, and
Wilde
,
D.
,
2000
,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
,
New York
.
45.
Kelly
,
J.
,
Papalambros
,
P. Y.
, and
Seifert
,
C. M.
,
2008
, “
Interactive Genetic Algorithms for Use as Creativity Enhancement Tools
,”
Proceedings of the AAAI Spring Symposium
,
Stanford, CA
,
Mar. 26–28
, pp.
34
39
.
46.
Poles
,
S.
,
Rigoni
,
E.
, and
Robic
,
T.
,
2004
, “
MOGA-II Performance on Noisy Optimization Problems
.”
Proceedings of the International Conference on Bioinspired Optimization Methods and Their Applications
,
Jozef Stefan Institute, Ljubljana
, pp.
51
62
.
47.
Poirson
,
E.
,
Petiot
,
J.-F.
,
Aliouat
,
E.
,
Boivin
,
L.
, and
Blumenthal
,
D.
,
2010
, “
Study of the Convergence of Interactive Genetic Algorithm in Iterative User's Tests: Application to Car Dashboard Design
,”.
Proceedings of IDMME—Virtual Concept 2010 Bordeaux
,
France
,
Oct. 20–22
.
48.
Hair
,
J. F.
,
Tatham
,
R. L.
,
Anderson
,
R. E.
, and
Black
,
W.
,
1998
,
Multivariate Data Analysis
,
5th ed.
,
Prentice Hall
,
Upper Saddle River, NJ
.
49.
Giordano
,
G.
,
Gettler-Summa
,
M.
, and
Verde
,
R.
,
2000
, “
Symbolic Interpretation in a Clustering Strategy on Multiattribute Preference Data
,”
Stat. Appl. Ital. J. Appl. Stat.
,
4
, pp.
473
495
.
50.
Michalek
,
J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
,
2006
, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
J. Mech. Des.
,
128
, pp.
1196
1204
.10.1115/1.2336252
51.
Wassenaar
,
H. J.
, and
Chen
,
W.
,
2003
, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
J. Mech. Des.
,
125
, pp.
490
497
.10.1115/1.1587156
52.
Brunswik
,
E.
,
1952
,
The Conceptual Framework of Psychology
,
University of Chicago Press
,
Chicago, IL
.
You do not currently have access to this content.