The constraint-based design of flexure mechanisms requires a qualitative and quantitative understanding of the constraint characteristics of flexure elements that serve as constraints. This paper presents the constraint characterization of a uniform and symmetric cross-section, slender, spatial beam—a basic flexure element commonly used in three-dimensional flexure mechanisms. The constraint characteristics of interest, namely stiffness and error motions, are determined from the nonlinear load–displacement relations at the beam end. Appropriate assumptions are made while formulating the strain and strain energy expressions for the spatial beam to retain relevant geometric nonlinearities. Using the principle of virtual work, nonlinear beam governing equations are derived and subsequently solved for general end loads. The resulting nonlinear load–displacement relations capture the constraint characteristics of the spatial beam in a compact, closed-form, and parametric manner. This constraint model is shown to be accurate using nonlinear finite element analysis, within a load and displacement range of practical interest. The utility of this model lies in the physical and analytical insight that it offers into the constraint behavior of a spatial beam flexure, its use in design and optimization of 3D flexure mechanism geometries, and its elucidation of fundamental performance tradeoffs in flexure mechanism design.

References

References
1.
Jones
,
R. V.
,
1988
,
Instruments and Experiences: Papers on Measurement and Instrument Design
,
Wiley
,
New York
.
2.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms, Gordon and Breach Science Publishers
,
New York
.
3.
Blanding
,
D. K.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles, ASME Press
,
New York
.
4.
Awtar
,
S.
,
2004
, “
Analysis and Synthesis of Planer Kinematic XY Mechanisms
,” Sc. D., Massachusetts Institute of Technology, Cambridge, MA.
5.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
, pp.
259
270
.10.1016/j.precisioneng.2009.06.008
6.
Su
,
H. J.
, and
Tari
,
H.
,
2010
, “
Realizing Orthogonal Motions With Wire Flexures Connected in Parallel
,”
ASME J. Mech. Des.
,
132
, p.
121002
.10.1115/1.4002837
7.
Sen
,
S.
, and
Awtar
,
S.
,
2010
, “
Nonlinear Constraint Model for Symmetric Three-Dimensional Beams
,”
Proceedings of IDETC/CIE 2010
,
Montreal, Canada
, pp.
607
618
.
8.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-based Flexure Modules
,”
J. Mech. Des.
,
129
, pp.
625
639
.10.1115/1.2717231
9.
Zelenika
,
S.
, and
DeBona
,
F.
,
2002
, “
Analytical and Experimental Characterization of High Precision Flexural Pivots Subjected to Lateral Loads
,”
Precis. Eng.
,
26
, pp.
381
388
.10.1016/S0141-6359(02)00149-6
10.
DaSilva
,
M. R. M. C.
,
1988
, “
Non-Linear Flexural-Flexural-Torsional-Extensional Dynamics of Beams—I. Formulation
,”
Int. J. Solids Struct.
,
24
, pp.
1225
1234
.10.1016/0020-7683(88)90087-X
11.
Hodges
,
D. H.
, and
Dowell
,
E. H.
,
1974
, “
Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Non-Uniform Rotor Blades
,” NASA Technical Note D-7818.
12.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1969
,
Theory of Elastisity
,
McGraw-Hill
,
New York
.
13.
Crandall
,
S. H.
,
Dahl
,
N. C.
, and
Lardner
,
T. J.
,
1972
,
An Introduction to the Mechanics of Solids
,
McGraw-Hill Book Company
,
New York
.
14.
Euler
,
L.
,
1744
,
Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, “Lausannæ, Genevæ, apud Marcum-Michaelem Bousquet & socios”
. Available at http://archive.org/details/methodusinvenie00eulegoog
15.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Non-Linear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
, p.
0810091
.
16.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworth & Co. Ltd
.,
London
.
17.
Przemieniecki
,
J. S.
,
1968
,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York.
18.
Bisshop
,
K. E.
, and
Drucker
,
D. C.
,
1945
, “
Large Deflections of Cantilever Beams
,”
Q. Appl. Math.
,
3
(3)
, pp.
272
275
.
19.
Ramirez
,
I. A.
, and
Lusk
,
C.
,
2011
, “
Spatial-Beam Large-Deflection Equations and Pseudo-Rigid Body Model for Axisymmetric Cantilever Beams
,”
Proceedings of the IDETC/CIE 2011
,
Washington D. C.
, pp.
43
49
.
20.
Shames
,
I. H.
, and
Dym
,
C. L.
,
1985
,
Energy and Finite Element Methods in Structural Mechanics
,
Taylor and Francis
,
New York, NY
.
21.
Rubin
,
M. B.
,
2000
,
Cosserat Theories: Shells, Rods, and Points
,
Springer
,
New York
.
22.
Kirchhoff
,
G.
,
1859
, “
Uber des Gleichgewicht und die Bewegung eines unendlich dunner elasticschen Slabes
,”
J. Reine Agnew. Math.
,
56
, pp.
285
313
.10.1515/crll.1859.56.285
23.
Chouaie
,
B. N.
, and
Maddocks
,
J. H.
,
2004
, “
Kirchhoff's Problem of Helical Equilibria of Uniform Rods
,”
J. Elasticity
,
77
, pp.
221
247
.10.1007/s10659-005-0931-z
24.
Whitman
,
A. B.
and
DeSilva
,
C. N.
,
1974
, “
An Exact Solution in a Nonlinear Theory of Rods
,”
J. Elasticity
,
4
(4)
, pp.
265
280
.10.1007/BF00048610
25.
Antman
,
S. S.
,
1974
, “
Kirchhoff's Problem for Nonlinearly Elastic Rods
,”
Q. Appl. Math.
,
32
(3)
, pp.
221
240
.
26.
Krylov
,
A. N.
,
1931
, Calculation of Beams on Elastic Foundation, Russian Academy of Sciences, St. Petersburg.
27.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
, pp.
680
706
.10.1016/j.mechmachtheory.2010.12.007
28.
Popescu
,
B.
, and
Hodges
,
D. H.
,
1999
, “
Asymptotic Treatment of the Trapeze Effect in Finite Element Cross-Sectional Analysis of Composite Beams
,”
Int. J. Non-Linear Mech.
,
34
, pp.
709
721
.10.1016/S0020-7462(98)00049-3
29.
Sen
,
S.
, and
Awtar
,
S.
,
2011
, “
Nonlinear Strain Energy Formulation to Capture the Constraint Characteristics of a Spatial Symmetric Beam
,”
Proceedings of the IDETC/CIE 2011
,
Washington
, pp.
127
135
.
You do not currently have access to this content.