This paper presents a methodology to provide the cumulative failure distribution (CDF) for degrading, uncertain, and dynamic systems. The uniqueness and novelty of the methodology is that long service time over which degradation occurs has been augmented with much shorter cycle time over which there is uncertainty in the system dynamics due to uncertain design variables. The significance of the proposed methodology is that it sets the foundation for setting realistic life-cycle management policies for dynamic systems. The methodology first replaces the implicit mechanistic model with a simple explicit meta-model with the help of design of experiments and singular value decomposition, then transforms the dynamic, time variant, probabilistic problem into a sequence of time invariant steady-state probability problems using cycle-time performance measures and discrete service time, and finally, builds the CDF as the summation of the incremental service-time failure probabilities over the planned life time. For multiple failure modes and multiple discrete service times, set theory establishes a sequence of true incremental failure regions. A practical implementation of the theory requires only two contiguous service-times. Probabilities may be evaluated by any convenient method, such as Monte Carlo and the first-order reliability method. Error analysis provides ways to control errors with regards to probability calculations and meta-model fitting. A case study of a common servo-control mechanism shows that the new methodology is sufficiently fast for design purposes and sufficiently accurate for engineering applications.

References

References
1.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.10.1007/s00158-001-0160-4
2.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and
Mistree
,
F.
,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.10.2514/2.1234
3.
Van Gigch
,
J. P.
,
1991
,
System Design Modeling and Metamodeling
,
Plenum Press
, New York.
4.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Statist. Sci.
,
4
(
4
), pp.
409
423
.10.1214/ss/1177012413
5.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.10.2514/1.8650
6.
Meckesheimer
,
M.
,
Booker
,
A. J.
,
Barton
,
R. R.
, and
Simpson
,
T. W.
,
2002
, “
Computationally Inexpensive Metamodel Assessment Strategies
,”
AIAA J.
,
40
(
10
), pp.
2053
2060
.10.2514/2.1538
7.
Ahmed
,
M. Y. M.
, and
Qin
,
N.
,
2009
, “
Comparison of Response Surface and Kriging Surrogates in Aerodynamic Design Optimization of Hypersonic Spiked Blunt Bodies
,”
13th International Conference on Aerospace Sciences and Aviation Technology
,
May 26th–28th
,
Military Technical College, Kobry Elkobbah, Cairo, Egypt
.
8.
Kleijnen
,
J. P. C.
, and
Van Beers
,
W. C. M.
,
2003
, “
Kriging for Interpolation in Random Simulation
,”
J. Oper. Res. Soc.
,
54
, pp.
255
262
.10.1057/palgrave.jors.2601539
9.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
, pp.
129
150
.10.1007/PL00007198
10.
Joseph
,
V.
,
Hung
,
Y.
, and
Sudjianto
,
A.
,
2012
, “
Blind Kriging: A New Method for Developing Metamodels
,”
ASME J. Mech. Des.
,
139
, p.
031102
.
11.
Savage
,
G. J.
, and
Son
,
Y. K.
,
2009
, “
Dependability-Based Design Optimization of Degrading Engineering Systems
,”
Mech. Des.
,
131
, p.
011002
.10.1115/1.3013295
12.
Son
,
Y. K.
, and
Savage
,
G. J.
,
2007
, “
Set Theoretic Formulation of Performance Reliability of Multiple Response Time-Variant Systems Due to Degradations in System Components
,”
Qual. Reliab. Eng. Int.
,
2
, pp.
171
188
.10.1002/qre.783
13.
Nicolai
,
R. P.
,
Dekker
,
R.
, and
Van Noortwijk
,
J. M.
,
2007
, “
A Comparison of Models for Measurable Deterioration: An Application to Coatings on Steel Structures
,”
Reliab. Eng. Syst. Saf.
,
92
, pp.
1635
1650
.10.1016/j.ress.2006.09.021
14.
Huang
,
W.
, and
Dietrich
,
D. L.
,
2005
, “
An Alternative Degradation Reliability Modeling Approach Using Maximum Likelihood Estimation
,”
IEEE Trans. Reliab.
,
52
(
2
), pp.
310
317
.10.1109/TR.2005.845965
15.
Pandey
,
M. D.
,
1998
, “
Probabilistic Models for Condition Assessment of Oil and Gas Pipelines
,”
J. Non-Destr. Test. Eval.
,
31
(
5
), pp.
340
358
.
16.
Stewart
,
M. G.
, and
Rosowsky
,
D. V.
,
1998
, “
Time-Dependent Reliability of Deterioration Reinforced Concrete Bridge Decks
,”
Struct. Saf.
,
20
(
1
), pp.
91
109
.10.1016/S0167-4730(97)00021-0
17.
Hong
,
H. P.
,
2000
, “
Assessment of Reliability of Aging Reinforced Concrete Structures
,”
ASCE J. Struct. Eng.
,
126
(
12
), pp.
1458
1465
.10.1061/(ASCE)0733-9445(2000)126:12(1458)
18.
Pandey
,
M. D.
,
Yuan
,
X. X.
, and
van Noortwijk
,
J. M.
,
2009
, “
The Influence of Temporal Uncertainty of Deterioration in Life-Cycle Management of Structures
,”
Struct. Infrastruct. Eng.
,
5
(
2
), pp.
145
156
.10.1080/15732470601012154
19.
Alexopoulos
,
N. D.
, and
Papanikos
,
P.
,
2008
, “
Experimental and Theoretical Studies of Corrosion-Induced Mechanical Properties Degradation of Aircraft 2024 Aluminum Alloy
,”
Mater. Sci. Eng.
,
498
, pp.
248
257
.10.1016/j.msea.2008.08.024
20.
Zuo
,
M. J.
,
Jiang
,
R.
, and
Yam
,
R. C. A.
,
1999
, “
Approaches for Reliability Modeling of Continuous-State Devices
,”
IEEE Trans. Reliab.
,
48
(
1
), pp.
9
18
.10.1109/24.765922
21.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
22.
Bogdanoff
,
J. L.
, and
Kozin
,
F.
,
1985
,
Probabilistic Models of Cumulative Damage
,
John Wiley & Sons
,
New York
.
23.
Finkelstein
,
M.
, and
Cha
,
J. H.
,
2010
, “
On Some Shock Models of Degradation
,”
Advances in Degradation Models, Part 2
, pp.
117
124
.10.1007/978-0-8176-4924-1
24.
Ogata
,
K.
,
2004
,
System Dynamics
,
Pearson Prentice Hall
, Upper Saddle River, NJ.
25.
Cochin
,
I.
,
1980
,
Analysis and Design of Dynamic Systems
,
Harper and Row
,
New York
.
26.
Esfandiari
,
R. S.
, and
Lu
,
B.
,
2010
,
Modeling and Analysis of Dynamic Systems
,
CRC Press
, Boca Raton, FL.
27.
Lu
,
X.
, and
Li
,
H.-X.
,
2011
, “
Robust Design for Dynamic Systems Under Model Uncertainty
,”
ASME J. Mech. Des.
,
133
, p.
021006
.10.1115/1.4003342
28.
Wehrwein
,
D.
, and
Mourelatos
,
Z. P.
,
2008
, “
Reliability-Based Design Optimization of Vehicle Drivetrain Dynamic Performance
,”
Int. J. Prod. Dev.
,
5
(
1–2
), pp.
54
75
.10.1504/IJPD.2008.016370
29.
Seecharan
,
T. S.
, and
Savage
,
G. J.
,
2011
, “
Metamodel–Based Probabilistic Design of Static Systems With Extensions to Dynamic Systems
,”
Int. J. Reliab. Qual. Saf. Eng.
,
18
(
4
), pp.
305
310
.10.1142/S0218539311004263
30.
Van den Bogaard
,
J. A.
,
Shreeram
,
J.
, and
Brombacher
,
A. C.
,
2003
, “
A Method for Reliability Optimization through Degradation Analysis and Robust Design
,”
Proceedings of Reliability and Maintainability Symposium
, pp.
55
62
.
31.
Styblinski
,
M. A.
, and
Huang
,
M.
,
1993
, “
Drift Reliability Optimization in IC Design: Generalized Formulation and Practical Examples
,”
IEEE IEEE Trans. Comput.-Aided Des.
,
12
(
8
), pp.
1242
1252
.10.1109/43.238616
32.
Styblinski
,
M. A.
,
1991
, “
Formulation of the Drift Reliability Optimization Problem
,”
Microelectron. Reliab.
,
31
(
1
), pp.
159
171
.10.1016/0026-2714(91)90360-J
33.
Montgomery
,
D. C.
,
2005
,
Design and Analysis of Experiments
,
John Wiley & Sons Inc.
,
New York
.
34.
Leon
,
S. J.
,
1998
,
Linear Algebra With Applications
,
Prentice-Hall
,
Upper Saddle River, NJ
.
35.
Xiu
,
D.
,
2007
, “
Efficient Collocational Approach for Parametric Uncertainty Analysis
,”
Comm. Comp. Phys.
,
2
(
2
), pp.
293
309
.
36.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.10.1007/s00158-010-0568-9
37.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
, pp.
470
472
.10.1214/aoms/1177729394
38.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Method of Structural Safety
,
Prentice Hall Inc.
, Englewood Cliffs, NJ.
39.
Melchers
,
R. E.
,
1987
,
Structural Reliability: Analysis and Prediction
,
John Wiley & Sons
,
England
.
You do not currently have access to this content.