An earlier study introduced the concept of piezoelectric energy-harvesting skin (EHS) to harvest energy by attaching thin piezoelectric patches onto a vibrating skin. This paper presents a methodology for the optimum design of EHS with the use of an efficient topology optimization method referred to as the hybrid cellular automaton (HCA) algorithm. The design domain of the piezoelectric material is discretized into cellular automata (CA), and the response of each CA is measured using high-fidelity finite-element analysis of a vibrating structure. The CA properties are parameterized using nonlinear interpolation functions that follow the principles of the SIMP model. The HCA algorithm finds the optimal densities and polarizing directions at each CA that maximize the output power from the EHS. The performance of this approach is demonstrated for the optimal design of EHS in two real-world case studies.

References

References
1.
Park
,
G.
,
Rosing
,
T.
,
Todd
,
M. D.
,
Farrar
,
C. R.
, and
Hodgkiss
,
W.
,
2008
, “
Energy Harvesting for Structural Health Monitoring Sensor Networks
,”
J. Infrastruct. Syst.
,
14
, pp.
64
79
.10.1061/(ASCE)1076-0342(2008)14:1(64)
2.
Bai
,
H.
,
Atiquzzaman
,
M.
, and
Lilja
,
D.
,
2005
, “
Wireless Sensor Network for Aircraft Health Monitoring
,”
Proceedings of First International Conference on Broadband Networks (BroadNets 2004)
,
Minneapolis, MN
.
3.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.10.1016/S0140-3664(02)00248-7
4.
ITP Sensors and Automation: Low-Cost Vibration Power Harvesting for Wireless Sensors
, http://www1.eere.energy.gov/industry/sensors_automation/pdfs/kcf_vibrationpower.pdf
5.
EnOcean, “Building Automation Using Energy Harvesting Wireless Sensor Technology
,” http://www.enocean.com/en/building-automation/
6.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J. M.
,
2004
,
Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations
,
Springer
,
New York
.
7.
Glynne-Jones
,
P.
,
Beeby
,
S. P.
, and
White
,
N. M.
,
2001
, “
Towards a Piezoelectric Vibration-Powered Microgenerator
,”
IEE Proc.: Sci., Meas. Technol.
,
148
(
2
), pp.
68
72
.10.1049/ip-smt:20010323
8.
Sterken
,
T.
,
Baert
,
K.
,
Van Hoof
,
C.
,
Puers
,
R.
,
Borghs
,
G.
,
Fiorini
,
P.
,
Mcp
,
I.
, and
Leuven
,
B.
,
2004
, “
Comparative Modelling for Vibration Scavengers
,”
Proceedings of IEEE Sensors 2004
.
9.
Silk
,
M. G.
,
1984
,
Ultrasonic Transducers for Nondestructive Testing
,
Adem Hilger Ltd
, Accord, MA.
10.
Ren
,
K.
,
Liu
,
Y.
,
Geng
,
X.
,
Hofmann
,
H. F.
, and
Zhang
,
Q. M.
,
2006
, “
Single Crystal PMN-PT/Epoxy 1-3 Composite for Energy-Harvesting Application
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
(
3
), pp.
631
638
.10.1109/TUFFC.2006.1610572
11.
Nuffer
,
J.
, and
Bein
,
T.
,
2006
, “
Applications of Piezoelectric Materials in Transportation Industry
,”
Proceedings of Global Symposium on Innovative Solutions for the Advancement of the Transport Industry
,
San Sebastian, Spain
.
13.
Leland
,
E. S.
,
Lai
,
E. M.
, and
Wright
,
P. K.
,
2004
, “
A Self-Powered Wireless Sensor for Indoor Environmental Monitoring
,”
Proceedings of WNCG Conference
,
Austin, TX
.
14.
Lee
,
S.
,
Youn
,
B. D.
, and
Jung
,
B. C.
,
2009
, “
Robust Segment-Type Energy Harvester and Its Application to a Wireless Sensor
,”
Smart Mater. Struct.
,
18
, p.
095021
.10.1088/0964-1726/18/9/095021
15.
Lee
,
S.
, and
Youn
,
B. D.
,
2011
, “
A Design and Experimental Verification Methodology for an Energy Harvester Skin Structure
,”
Smart Mater. Struct.
,
20
, p.
057001
.10.1088/0964-1726/20/5/057001
16.
Goldschmidtboeing
,
F.
, and
Woias
,
P.
,
2008
, “
Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting
,”
J. Micromech. Microeng.
,
18
(
10
), p.
104013
.10.1088/0960-1317/18/10/104013
17.
Roundy
,
S.
,
Leland
,
E. S.
,
Baker
,
J.
,
Carleton
,
E.
,
Reilly
,
E.
,
Lai
,
E.
,
Otis
,
B.
,
Rabaey
,
J. M.
,
Wright
,
P. K.
, and
Sundararajan
,
V.
,
2005
, “
Improving Power Output for Vibration-Based Energy Scavengers
,”
IEEE Pervasive Comput.
,
4
(
1
), pp.
28
36
.10.1109/MPRV.2005.14
18.
Park
,
J.
,
Lee
,
S.
, and
Kwak
,
B. M.
,
2012
, “
Design Optimization of Piezoelectric Energy Harvester Subject to Tip Excitation
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
137
143
.10.1007/s12206-011-0910-1
19.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
17
, p.
065016
.10.1088/0964-1726/17/6/065016
20.
Zheng
,
B.
,
Chang
,
C. J.
, and
Gea
,
H. C.
,
2009
, “
Topology Optimization of Energy Harvesting Devices Using Piezoelectric Materials
,”
Struct. Multidiscip. Optim.
,
38
(
1
), pp.
17
23
.10.1007/s00158-008-0265-0
21.
Lin
,
Z.
,
Gea
,
H. C.
, and
Liu
,
S.
,
2010
, “
Topology Optimization of Piezoelectric Energy Harvesting Devices Subjected to Stochastic Excitation
,”
Proceedings of the ASME 2010 international Design Engineering Technical Conference (ASME/IDETC)
,
Montreal, Quebec, Canada
.
22.
Rupp
,
C. J.
,
Evgrafov
,
A.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2009
, “
Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells
,”
J. Intell. Mater. Syst. Struct.
,
20
(
16
), pp.
1923
1939
.10.1177/1045389X09341200
23.
Mateu
,
L.
, and
Moll
,
F.
,
2005
, “
Review of Energy Harvesting Techniques and Applications for Microelectronics
,”
Proc. SPIE
,
5837
, pp.
359
373
.10.1117/12.613046
24.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.10.1088/0964-1726/16/3/R01
25.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
205
.10.1177/0583102404043275
26.
Lee
,
S.
, and
Youn
,
B. D.
,
2011
, “
A New Piezoelectric Energy Harvesting Design Concept: Multimodal Energy Harvesting Skin
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
3
), pp.
629
645
.10.1109/TUFFC.2011.1967
27.
Lee
,
S.
, and
Youn
,
B. D.
,
2010
, “
A New Energy Harvesting Design Concept: Multimodal Energy Harvesting Skin
,”
Proceedings of AIAA/ISSMO Multidisciplinary Analysis and Optimization (MAO) Conference
,
Fort Worth, TX
.
28.
Tovar
,
A.
,
Patel
,
N. M.
,
Kaushik
,
A. K.
, and
Renaud
,
J. E.
,
2007
, “
Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization
,”
AIAA J.
,
45
(
3
), pp.
673
683
.10.2514/1.20184
29.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
,
2006
, “
Topology Optimization Using a Hybrid Cellular Automaton Method With Local Control Rules
,”
J. Mech. Des.
,
128
, pp.
1205
1216
.10.1115/1.2336251
30.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1992
, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
,
25
(
12
), pp.
1425
1441
.10.1016/0021-9290(92)90056-7
31.
Hart
,
R. T.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
,
1984
, “
Mathematical Modeling and Numerical Solutions for Functionally Dependent Bone Remodeling
,”
Calcif. Tissue Int.
,
36
, pp.
104
109
.10.1007/BF02406142
32.
Beaupre
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
,
1990
, “
An Approach for Time-Dependent Bone Modeling and Remodeling-Theoretical Development
,”
J. Orthop. Res.
,
8
(
5
), pp.
651
661
.10.1002/jor.1100080506
33.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4
), pp.
401
424
.10.1007/s00158-006-0087-x
34.
Patel
,
N. M.
,
Tillotson
,
D.
,
Renaud
,
J. E.
,
Tovar
,
A.
, and
Izui
,
K.
,
2008
, “
Comparative Study of Topology Optimization Techniques
,”
AIAA J.
,
46
(
8
), pp.
1963
1975
.10.2514/1.31053
35.
Patel
,
N. M.
,
Kang
,
B. S.
, and
Renaud
,
J. E.
,
2006
, “
Crashworthiness Design Using a Hybrid Cellular Automaton Algorithm
,”
Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2006)
,
Philadelphia, Pennsylvania
.
36.
Goetz
,
J.
,
Tan
,
H.
,
Renaud
,
J.
, and
Tovar
,
A.
, “
Two-Material Optimization of Plate Armour for Blast Mitigation Using Hybrid Cellular Automata
,”
Eng. Optimiz.
44
(8), pp.
985
1005
.
37.
Allik
,
H.
, and
Hughes
,
T. J. R.
,
1970
, “
Finite Element Method for Piezoelectric Vibration
,”
Int. J. Numer. Methods Eng.
,
2
(
2
), pp.
151
157
.10.1002/nme.1620020202
38.
Bendsoe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Multidiscip. Optim.
,
1
(
4
), pp.
193
202
. Available at: http://link.springer.com/article/10.1007%2FBF01650949?LI=true
39.
Silva
,
E. C. N.
, and
Kikuchi
,
N.
,
1999
, “
Design of Piezoelectric Transducers Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
350
364
.10.1088/0964-1726/8/3/307
40.
Ha
,
Y.
, and
Cho
,
S.
,
2006
, “
Design Sensitivity Analysis and Topology Optimization of Eigenvalue Problems for Piezoelectric Resonators
,”
Smart Mater. Struct.
,
15
, pp.
1513
1524
.10.1088/0964-1726/15/6/002
41.
Koegl
,
M.
, and
Silva
,
E. C. N.
,
2005
, “
Topology Optimization of Smart Structures: Design of Piezoelectric Plate and Shell Actuators
,”
Smart Mater. Struct.
,
14
(
2
), pp.
387
399
.10.1088/0964-1726/14/2/013
42.
Penninger
,
C. L.
,
Watson
,
L. T.
,
Tovar
,
A.
, and
Renaud
,
J. E.
,
2010
, “
Convergence Analysis of Hybrid Cellular Automata for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
40
(
1
), pp.
271
282
.10.1007/s00158-009-0360-x
43.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
,
2009
, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
J. Vibr. Acoust.
,
131
, p.
011010
.10.1115/1.2981094
44.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
,
1999
,
Optimization Concepts and Applications in Engineering
,
Cambridge University Press
, Upper Saddle River, NJ.
45.
Lin
,
Z. Q.
,
Gea
,
H. C.
, and
Liu
,
S. T.
,
2011
, “
Design of Piezoelectric Energy Harvesting Devices Subjected to Broadband Random Vibrations by Applying Topology Optimization
,”
Acta Mech. Solida Sinica
,
22
(
5
), pp.
730
737
.10.1007/s10409-011-0491-3
46.
Lee
,
S.
,
Youn
,
B. D.
, and
Giraud
,
M.
,
2010
, “
Designing Energy Harvesting Skin Structure Utilizing Outdoor Unit Vibration
,”
Proceedings of International Design Engineering Technical Conferences (IDETC)
,
Montreal, Canada
.
You do not currently have access to this content.