When magnetic resonance (MR) images are collected while applying a load to the knee joint, additional information about the joint response to loading can be acquired such as cartilage deformation, whole joint and ligament stiffness, or physiological estimates of weight-bearing joint positions. To allow load application and controlled lower limb movement in supine MR imaging, the knee loading apparatus (KLA) was designed to apply safe and physiologically relevant controlled loads to the knee joint, position the knee through a range of flexion angles, and operate successfully in a magnetic environment. The KLA is composed of three main components: a remotely operated custom hydraulic loading system, a logic system that interfaces with the user, and modular non ferromagnetic positioning frames. Three positioning frames are presented for application to anterior tibial loading, tibiofemoral compression, and patellofemoral compression at multiple knee flexion angles. This system design makes improvements over current devices. Safe remotely applied loads (hydraulic loading system) can be applied by either subject or tester and in multiple locations simultaneously. Additionally, loads can be altered at any time in a continuous manner without electrical interference. Transportability was improved due to a smaller footprint. The KLA has the flexibility to attach any positioning frame with many possible loading scenarios without changing the loading mechanism or logic systems, and allows force values over time to be output rather than estimated. An evaluation of the load repeatability (within 7% of applied load) and accuracy (0.5–14.9%) demonstrates the feasibility of this design for investigations into in vivo knee joint responses to loading.

References

References
1.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1999
, “
In Situ Measurement of Articular Cartilage Deformation in Intact Femoropatellar Joints Under Static Loading
,”
J. Biomech.
,
32
(
12
), pp.
1287
1295
.10.1016/S0021-9290(99)00130-X
2.
Eckstein
,
F.
,
Lemberger
,
B.
,
Stammberger
,
T.
,
Englmeier
,
K. H.
, and
Reiser
,
M.
,
2000
, “
Patellar Cartilage Deformation In Vivo After Static Versus Dynamic Loading
,”
J. Biomech.
,
33
(
7
), pp.
819
825
.10.1016/S0021-9290(00)00034-8
3.
Besier
,
T. F.
,
Draper
,
C. E.
,
Gold
,
G. E.
,
Beaupre
,
G. S.
, and
Delp
,
S. L.
,
2005
, “
Patellofemoral Joint Contact Area Increases With Knee Flexion and Weight-Bearing
,”
J. Orthop. Res.
,
23
(
2
), pp.
345
350
.10.1016/j.orthres.2004.08.003
4.
Gold
,
G. E.
,
Besier
,
T. F.
,
Draper
,
C. E.
,
Asakawa
,
D. S.
,
Delp
,
S. L.
, and
Beaupre
,
G. S.
,
2004
, “
Weight-Bearing MRI of Patellofemoral Joint Cartilage Contact Area
,”
J. Magn. Reson. Imaging
,
20
(
3
), pp.
526
530
.10.1002/jmri.20146
5.
Aalbersberg
,
S.
,
Kingma
,
I.
,
Ronsky
,
J. L.
,
Frayne
,
R.
, and
van Dieen
,
J. H.
,
2005
, “
Orientation of Tendons In Vivo With Active and Passive Knee Muscles
,”
J. Biomech.
,
38
(
9
), pp.
1780
1788
.10.1016/j.jbiomech.2004.09.003
6.
Nag
,
D.
,
Liney
,
G. P.
,
Gillespie
,
P.
, and
Sherman
,
K. P.
,
2004
, “
Quantification of T(2) Relaxation Changes in Articular Cartilage With In Situ Mechanical Loading of the Knee
,”
J Magn. Reson. Imaging
,
19
(
3
), pp.
317
322
.10.1002/jmri.20000
7.
Dahabreh
,
I. J.
,
Hadar
,
N.
, and
Chung
,
M.
,
2011
, “
Emerging Magnetic Resonance Imaging Technologies for Musculoskeletal Imaging Under Loading Stress: Scope of the Literature
,”
Ann Intern Med.
,
155
(
9
), pp.
616
624
.10.1059/0003-4819-155-9-201111010-00009
8.
Fellows
,
R. A.
,
Hill
,
N. A.
,
Macintyre
,
N. J.
,
Harrison
,
M. M.
,
Ellis
,
R. E.
, and
Wilson
,
D. R.
,
2005
, “
Repeatability of a Novel Technique for In Vivo Measurement of Three-Dimensional Patellar Tracking Using Magnetic Resonance Imaging
,”
J. Magn. Reson. Imaging
,
22
(
1
), pp.
145
153
.10.1002/jmri.20360
9.
Shefelbine
,
S. J.
,
Ma
,
C. B.
,
Lee
,
K. Y.
,
Schrumpf
,
M. A.
,
Patel
,
P.
,
Safran
,
M. R.
,
Slavinsky
,
J. P.
, and
Majumdar
,
S.
,
2006
, “
MRI Analysis of In Vivo Meniscal and Tibiofemoral Kinematics in ACL-Deficient and Normal Knees
,”
J. Orthop. Res.
,
24
(
6
), pp.
1208
1217
.10.1002/jor.20139
10.
Carpenter
,
R. D.
,
Shefelbine
,
S. J.
,
Lozano
,
J.
,
Carballido-Gamio
,
J.
,
Majumdar
,
S.
, and
Ma
,
C. B.
,
2008
, “
A New Device for Measuring Knee Rotational Kinematics Using Magnetic Resonance Imaging
,”
J. Med. Devices
,
2
, p.
044501
.10.1115/1.2976029
11.
Ward
,
S. R.
,
Terk
,
M. R.
, and
Powers
,
C. M.
,
2005
, “
Influence of Patella Alta on Knee Extensor Mechanics
,”
J. Biomech.
,
38
(
12
), pp.
2415
2422
.10.1016/j.jbiomech.2004.10.010
12.
Arno
,
S.
,
Chaudhary
,
M.
,
Walker
,
P. S.
,
Forman
,
R.
,
Glassner
,
P.
,
Regatte
,
R.
, and
Oh
,
C.
,
2012
, “
Anterior-Posterior Stability of the Knee by an MR Image Subtraction Method
,”
The Knee
,
19
(
4
), pp.
445
449
.10.1016/j.knee.2011.05.007
13.
Salsich
,
G. B.
,
Ward
,
S. R.
,
Terk
,
M. R.
, and
Powers
,
C. M.
,
2003
, “
In Vivo Assessment of Patellofemoral Joint Contact Area in Individuals Who are Pain Free
,”
Clin. Orthop. Relat. Res.
,
417
, pp.
277
284
.10.1097/01.blo.0000093024.56370.79
14.
Subburaj
,
K.
,
Souza
,
R. B.
,
Stehling
,
C.
,
Wyman
,
B. T.
,
Le Graverand-Gastineau
,
M. P.
,
Link
,
T. M.
,
Li
,
X.
, and
Majumdar
,
S.
,
2012
, “
Association of MR Relaxation and Cartilage Deformation in Knee Osteoarthritis
,”
J. Orthop. Res.
,
30
(
6
), pp.
919
926
.10.1002/jor.22031
15.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lotz
,
J.
,
Ozhinsky
,
E.
,
Lindsey
,
C.
,
Lu
,
Y.
, and
Majumdar
,
S.
,
2004
, “
A Three-Dimensional MRI Analysis of Knee Kinematics
,”
J. Orthop. Res.
,
22
(
2
), pp.
283
292
.10.1016/j.orthres.2003.08.015
16.
Ronsky
,
J. L.
,
1994
, “
In-Vivo Quantification of Patellofemoral Joint Contact Characteristics
,” Ph.D. thesis, University of Calgary, Calgary.
17.
Proulx
,
S.
, and
Plante
,
J. S.
,
2011
, “
Assessment of an Elastically Averaged Binary Manipulator Using Pneumatic Air Muscles for Magnetic Resonance Imaging Guided Prostate Interventions
,”
J. Mech. Des.
,
133
, p.
111011
.10.1115/1.4004983
18.
Kupper
,
J. C.
,
Loitz-Ramage
,
B.
,
Corr
,
D. T.
,
Hart
,
D. A.
, and
Ronsky
,
J. L.
,
2007
, “
Measuring Knee Joint Laxity: A Review of Applicable Models and the Need for New Approaches to Minimize Variability
,”
Clin. Biomech.
(
Bristol
,
Avon
),
22
(
1
), pp.
1
13
.10.1016/j.clinbiomech.2006.08.003
19.
Connolly
,
K. D.
,
Ronsky
,
J. L.
,
Westover
,
L. M.
,
Kupper
,
J. C.
, and
Frayne
,
R.
,
2009
, “
Analysis Techniques for Congruence of the Patellofemoral Joint
,”
J. Biomech. Eng.
,
131
(
12
), p.
124503
.10.1115/1.3212111
20.
Fjeld
,
I. R.
,
2007
, “
In-Vivo Dynamic Joint Stability Quantified in Intact and ACL Deficient Knees
,” Ph.D. thesis, University of Calgary, Calgary.
21.
Daniel
,
D. M.
, and
Stone
,
M. L.
,
1990
,
Instrumented Measurement of Knee Motion
,
Raven
,
New York
.
22.
Maitland
,
M. E.
,
Bell
,
G. D.
,
Mohtadi
,
N. G.
, and
Herzog
,
W.
,
1995
, “
Quantitative Analysis of Anterior Cruciate Ligament Instability
,”
Clin. Biomech.
(
Bristol
,
Avon
),
10
(
2
), pp.
93
97
.10.1016/0268-0033(95)92045-N
23.
Reilly
,
D. T.
, and
Martens
,
M.
,
1972
, “
Experimental Analysis of the Quadriceps Muscle Force and Patello-Femoral Joint Reaction Force for Various Activities
,”
Acta Orthop. Scand.
,
43
(
2
), pp.
126
137
.10.3109/17453677208991251
24.
Zernicke
,
R. F.
,
Garhammer
,
J.
, and
Jobe
,
F. W.
,
1977
, “
Human Patellar-Tendon Rupture
,”
J. Bone Jt. Surg., Am. Vol.
,
59
(
2
), pp.
179
183
. 10.1016/0268-0033(95)92045-N
25.
Huber
,
F. E.
,
Irrgang
,
J. J.
,
Harner
,
C.
, and
Lephart
,
S.
,
1997
, “
Intratester and Intertester Reliability of the KT-1000 Arthrometer in the Assessment of Posterior Laxity of the Knee
,”
Am. J. Sports Med.
,
25
(
4
), pp.
479
485
.10.1177/036354659702500410
26.
Herberhold
,
C.
,
Stammberger
,
T.
,
Faber
,
S.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1998
, “
An MR-Based Technique for Quantifying the Deformation of Articular Cartilage During Mechanical Loading in an Intact Cadaver Joint
,”
Magn. Reson. Med.
,
39
(
5
), pp.
843
850
.10.1002/mrm.1910390522
27.
Daniel
,
D. M.
,
Malcom
,
L. L.
,
Losse
,
G.
,
Stone
,
M. L.
,
Sachs
,
R.
, and
Burks
,
R.
,
1985
, “
Instrumented Measurement of Anterior Laxity of the Knee
,”
J. Bone Jt. Surg., Am. Vol.
,
67
(
5
), pp.
720
726
.
28.
Highgenboten
,
C. L.
,
Jackson
,
A.
, and
Meske
,
N. B.
,
1989
, “
Genucom, KT-1000, and Stryker Knee Laxity Measuring Device Comparisons. Device Reproducibility and Interdevice Comparison in Asymptomatic Subjects
,”
Am. J. Sports Med.
,
17
(
6
), pp.
743
746
.10.1177/036354658901700602
29.
Muellner
,
T.
,
Bugge
,
W.
,
Johansen
,
S.
,
Holtan
,
C.
, and
Engebretsen
,
L.
,
2001
, “
Intertester and Intratester Comparison of the Rolimeter Knee Tester: Effect of Tester's Experience and the Examination Technique
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
9
(
5
), pp.
302
306
.10.1007/s001670100225
30.
Uh
,
B. S.
,
Beynnon
,
B. D.
,
Churchill
,
D. L.
,
Haugh
,
L. D.
,
Risberg
,
M. A.
, and
Fleming
,
B. C.
,
2001
, “
A New Device to Measure Knee Laxity During Weightbearing and Non-Weightbearing Conditions
,”
J. Orthop. Res.
,
19
(
6
), pp.
1185
1191
.10.1016/S0736-0266(01)00055-9
31.
Nigg
,
B. M.
, and
Herzog
,
W.
, eds.,
1999
,
Biomechanics of the Musculo-Skeletal System
,
Wiley
,
New York
.
32.
Winter
,
D.
, ed.,
1990
,
Biomechanics and Motor Control of Human Movement
,
Wiley-Interscience
,
Toronto, Ontario, Canada
.
33.
Moglo
,
K. E.
, and
Shirazi-Adl
,
A.
,
2003
, “
Biomechanics of Passive Knee Joint in Drawer: Load Transmission in Intact and ACL-Deficient Joints
,”
The Knee
,
10
(
3
), pp.
265
276
.10.1016/S0968-0160(02)00135-7
You do not currently have access to this content.