The development of product-service innovation projects within the context of a company is not yet supported by clear theories and methodologies. Our objective is to analyze innovation and idea generation for such projects from the fuzzy front end to the selected design concept, assessing their potential to be successfully developed and launched on the market. We present a protocol study, using which data derived from 19 innovation projects of five types and conducted by 86 students are analyzed. Sixty-one variables are observed, thus generating 700 data vectors. Bayesian network learning is used to explore conditional inferences among these variables. We examine conditional probabilities between the innovation process means and the significant results produced for the company, modulated by the influence of contextual variables. A number of surprising findings are drawn about the link between problem setting and problem solving processes, the importance of certain contextual variables, and the potential discrepancies between the apparent and produced results of innovative projects. Conducted analyses imply the need for novel innovation evaluation frameworks.

References

References
1.
Shah
,
J. J.
,
Kulkarni
,
S. V.
, and
Vargas-Hernandez
,
N.
,
2000
, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
J. Mech. Des.
,
122
(
4
), pp.
377
385
.10.1115/1.1315592
2.
Motte
,
D.
,
Bjärnemo
,
R.
, and
Yannou
,
B.
,
2011
, “
On the Interaction Between the Engineering Design and Development Process Models—Part I: Elaborate Elaborations on the Generally Accepted Process Models
,”
Proceedings of the ICoRD: 3rd International Conference on Research Into Design
,
Jan. 10–12
,
Bangalore, India
.
3.
Motte
,
D.
,
Bjärnemo
,
R.
, and
Yannou
,
B.
,
2011
, “
On the Interaction Between the Engineering Design and the Development Process Models—Part II: Shortcomings and Limitations
,”
Proceedings of the ICoRD: 3rd International Conference on Research into Design
,
Jan. 10–12
,
Bangalore, India
.
4.
Motte
,
D.
,
Yannou
,
B.
, and
Bjärnemo
,
R.
,
2011
, “
The Specificities of Radical Innovation
,”
Proceedings of the ICoRD: 3rd International Conference on Research into Design
,
Jan. 10–12
,
Bangalore, India
.
5.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
,
Springer, Technology & Industrial Arts
,
London and New York
.
6.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
1995
,
Product Design and Development
,
McGraw-Hill
,
New York
.
7.
Cross
,
N.
,
1994
,
Engineering Design Methods—Strategies for Product Design
,
John Wiley & Sons
,
Chichester
.
8.
Liu
,
Y. C.
,
Chakrabarti
,
A.
, and
Bligh
,
T.
,
2003
, “
Towards and “Ideal” Approach for Concept Generation
,”
Des. Stud.
,
24
(
4
), pp.
341
355
.10.1016/S0142-694X(03)00003-6
9.
Pugh
,
S.
,
1990
,
Total Design: Integrated Methods for Successful Product Engineers
,
Addison Wesley
,
New-York
.
10.
Lawson
,
B.
,
2006
,
How Designers Think: The Design Process Demystified
,
Architectural Press
,
Oxford
.
11.
Portillo
,
M.
,
2009
,
Color Planning for Interiors: An Integrated Approach to Color in Designed Spaces
, Hoboken, NJ:
John Wiley & Sons
, Inc.
12.
Portillo
,
M.
, and
Dohr
,
J. H.
,
1994
, “
Bridging Process and Structure Through Criteria
,”
Des. Stud.
,
15
(
4
), pp.
403
416
.10.1016/0142-694X(94)90004-3
13.
Gann
,
D.
,
Salter
,
A.
, and
Whyte
,
J.
,
2003
, “
Design Quality Indicators as a Tool for Thinking
,”
Build. Res. Inf.
,
31
(
5
), pp.
318
333
.10.1080/0961321032000107564
14.
Jones
,
E.
,
Stanton
,
N. A.
, and
Harrison
,
D.
,
2001
, “
Applying Structured Methods to Ecoinnovation. An evaluation of the Product Ideas Tree diagram
,”
Des. Stud.
,
22
(
6
), pp.
519
542
.10.1016/S0142-694X(01)00007-2
15.
Pinch
,
S.
,
Sunley
,
P.
, and
Macmillen
,
J.
,
2010
, “
Cognitive Mapping of Creative Practice: A Case Study of Three English Design Agencies
,”
Geoforum
,
41
, pp.
377
387
.10.1016/j.geoforum.2009.10.012
16.
Shah
,
J.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.10.1016/S0142-694X(02)00034-0
17.
Astebro
,
T.
,
2004
, “
Key Success Factors for Technological Enterpreneurs' R&D Projects
,”
IEEE Trans. Eng. Manage.
,
51
(
3
), pp.
314
321
.10.1109/TEM.2004.830863
18.
Millier
,
P.
,
1999
,
Marketing The Unknown: Developing Market Strategies for Technical Innovations
,
John Wiley & Sons
,
New York
.
19.
Dong
,
A.
,
Hill
,
A. W.
, and
Agogino
,
A.
,
2004
, “
A Document Analysis Method for Characterizing Design Team Performance
,”
J. Mech. Des.
,
126
, pp.
378
385
.10.1115/1.1711818
20.
Yang
,
M.
,
2004
, “
An Examination of Prototyping and Design Outcome
,”
Proceedings of the ASME Design Engineering Technical Conferences
,
Salt Lake City
.
21.
Yang
,
M.
,
2009
, “
Observations on Concept Generation and Sketching in Engineering Design
,”
Res. Eng. Des.
,
20
(
1
), pp.
1
11
.10.1007/s00163-008-0055-0
22.
Yang
,
M. C.
,
2003
, “
Concept Generation and Sketching: Correlations With Design Outcome
,”
Proceedings of DETC-DTM: ASME Design Engineering Technical Conferences—Design Theories and Methodologies
,
Sept. 2–6
,
Chicago, Illinois
.
23.
Gero
,
J. S.
, and
Kazakov
,
V.
,
1995
, “
An Exploration Based Evolutionary Model of a Generative Design Process
,”
Microcomput. Civ. Eng.
,
11
, pp.
209
216
.10.1.1.54.4834
24.
Roozenburg
,
N. F.
, and
Eekels
,
J.
,
1995
,
Product Design: Fundamentals and Methods
,
John Wiley & Sons
,
Chichester
.
25.
Fricke
,
G.
,
1996
, “
Successful Individual Approaches in Engineering Design
,”
Res. Eng. Des.
,
8
, pp.
151
156
.10.1007/BF01608350
26.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2007
, “
Understanding Search in Design
,”
Proceedings of International Conference on Engineering Design (ICED07)
,
August
,
Paris, France
.
27.
Römer
,
A.
,
Leinert
,
S.
, and
Sachse
,
P.
,
2000
, “
External Support of Problem Analysis in Design Problem Solving
,”
Res. Eng. Des.
,
12
(
3
), pp.
144
151
.10.1007/s001630050029
28.
Tovey
,
M.
,
Porter
,
S.
, and
Newman
,
R.
,
2003
, “
Sketching, Concept Development and Automotive Design
,”
Des. Stud.
,
24
(
2
), pp.
135
153
.10.1016/S0142-694X(02)00035-2
29.
Yang
,
M.
, and
Cham
,
J.
,
2007
, “
An Analysis of Sketching Skill and Its Role in Early Stage Engineering Design
,”
J. Mech. Des.
,
129
(5)
, pp.
476
482
.10.1115/1.2712214
30.
Mabogunje
,
A.
, and
Leifer
,
L.
,
1996
, “
Measuring the Mechanical Engineering Design Process
,”
Proceedings of the 26th Annual Frontiers in Education Conference on Technology-Based Re-Engineering Engineering Education
,
Salt Lake City
.
31.
Yang
,
M. C.
,
Wood
,
W. H.
, and
Cutkosky
,
R.
,
2005
, “
Design Information Retrieval: A Thesauri-Based Approach for Reuse of Informal Design Information
,”
Eng. Comput.
,
21
, pp.
177
192
.10.1007/s00366-005-0003-9
32.
Kulkarni
,
S.
,
1998
, “
Idea Generation Techniques-A Critical Survey
,” Technical Report, ASU/DAL/IG/98-2, Arizona State University, Tempe, AZ.
33.
VanGundy
,
A. B.
,
1988
,
Techniques of Structured Problem Solving
,
2nd ed.
,
Van Nostrand Reinhold
,
New York
.
34.
Chakrabarti
,
A.
,
2009
, “
Design Creativity Research
,”
Product Research: The Art and Science Behinf Sucessful Product Launches
,
Springer Science+Business Media B. V.
, Vol., pp.
17
39
.
35.
Davis
,
G. A.
,
1999
,
Creativity is Forever
,
4th ed.
,
Kendall Hunt
,
Dubuque Iowa
.
36.
Fox
,
J. M.
, and
Fox
,
R. L.
,
2000
,
Exploring the Nature of Creativity
,
Kendal Hunt
,
Dubuque Iowa
.
37.
Gluck
,
F. W.
,
1985
, “
“Big Bang” Management
,”
J. Bus. Strategy
,
6
(
1
), pp.
59
64
.10.1108/eb039100
38.
McKim
,
R. H.
,
1980
,
Thinking Visually: A Strategy Manual for Problem Solving
,
Lifetime Learning Publications Belmont
,
CA
.
39.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2011
, “
Assessing Design Creativity
,”
Des. Stud.
,
32
(
4
), pp.
348
383
.10.1016/j.destud.2011.01.002
40.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.10.1017/S0890060405050109
41.
Srinivasan
,
V.
, and
Chakrabarti
,
A.
,
2008
, “
Design for Novelty—A Framework?
,”
Proceedings of the Design Conference
,
May 19–22
,
Dubrovnik
, pp.
237
244
.
42.
Goldschmidt
,
G.
, and
Tatsa
,
D.
,
2005
, “
How Good are Good Ideas? Correlates of Design Creativity
,”
Des. Stud.
,
26
(
6
), pp.
593
611
.10.1016/j.destud.2005.02.004
43.
Goldschmidt
,
G.
,
1990
, “
Linkography: Assessing Design Productivity
,”
Proceedings of the Tenth European Meeting on Cybernetics and Systems Research
,
Singapore
, R Trappl.
44.
Goldschmidt
,
G.
,
2003
, “
Cognitive Economy in Design Reasoning
,”
Human Behaviour in Design: Individuals, Teams, Tools
,
U.
Lindeman
, ed.,
Springer Verlag
,
Berlin
, pp.
53
62
.
45.
van der
Lugt
R.
,
2001
, “
Sketching in Design Idea Generation Meetings
,” Ph. D Dissertation,
Faculty of Industrial Design, Delft University of Technology
,
Delft, The Netherlands
.
46.
Rianantsoa
,
N.
,
Yannou
,
B.
, and
Redon
,
R.
,
2010
, “
Concept-to-Value: Method and Tool for Value Creation in Conceptual Design
,”
Proceedings of IDETC/DAC: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conferences/Design Automation Conference
,
Aug. 15–18
,
Montreal, Canada
.
47.
Rianantsoa
,
N.
,
Yannou
,
B.
, and
Redon
,
R.
,
2010
, “
Dynamics of Definition and Evaluation of Value Creation Strategies and Design Concepts
,”
Proceedings of IDMME Virtual Concept
,
Oct. 20–22
,
Bordeaux, France
.
48.
Barton
,
D. N.
,
Saloranta
,
T.
,
Moe
,
S. J.
,
Eggestad
,
H. O.
, and
Kuikka
,
S.
,
2008
, “
Bayesian Belief Networks as a Meta-Modelling Tool in Integrated River Basin Management—Pros and Cons in Evaluating Nutrient Abatement Decisions Under Uncertainty in a Norwegian River Basin
,”
Ecol. Econ.
,
66
(
1
), pp.
91
104
.10.1016/j.ecolecon.2008.02.012
49.
Jensen
,
F. V.
, and
Nielsen
,
T. D.
,
2007
,
Bayesian Networks and Decision Graphs
,
Springer Science+Business Media, LLC
,
New York
.
50.
Chan
,
Z. S. H.
,
Ngan
,
H. W.
,
Rad
,
A. B.
,
David
,
A. K.
, and
Kasabov
,
N.
,
2006
, “
Short-Term ANN Load Forecasting From Limited Data Using Generalization Learning Strategies
,”
Neurocomputing
,
70
(
1–3
), pp.
409
419
.10.1016/j.neucom.2005.12.131
51.
Saini
,
L. M.
,
2008
, “
Peak Load Forecasting Using Bayesian Regularization, Resilient and Adaptive Backpropagation Learning Based Artificial Neural Networks
,”
Electr. Power Syst. Res.
,
78
(
7
), pp.
1302
1310
.10.1016/j.epsr.2007.11.003
52.
Grünwald
,
P. D.
,
2007
,
The Minimum Description Length Principle
,
The MIT Press
,
New York
.
53.
Jensen
,
F. V.
,
1996
,
An Introduction to Bayesian Networks
,
UCL Press
,
London
.
54.
Spirtes
,
P.
,
Glymour
,
C.
, and
Scheines
,
R.
,
2000
,
Causation, Prediction, and Search
,
2nd ed.
,
MIT Press
,
Cambridge, MA
.
55.
Heckerman
,
D.
,
Geiger
,
D.
, and
Chickering
,
D. M.
,
1995
, “
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
,”
Mach. Learn.
,
20
(
3
), pp.
197
243
.10.1023/A:1022623210503
56.
Jouffe
,
L.
,
2002
, “
Nouvelle classe de Méthodes D'apprentissage de Réseaux Bayésiens
,”
Proc. Journées francophones d'Extraction et de Gestion des Connaissances (EGC)
,
Montpellier, France
.
57.
Jouffe
,
L.
, and
Munteanu
,
P.
,
2000
, “
Smart-Greedy+: Apprentissage Hybride de Réseaux Bayésiens
,”
Colloque francophone sur l'apprentissage (CAP)
,
Saint Etienne, France
.
58.
Munteanu
,
P.
, and
Bendou
,
M.
,
2001
, “
The EQ Framework for Learning Equivalence Classes of Bayesian Networks
,”
Proceedings of the First IEEE International Conference on Data Mining (IEEE ICDM)
,
San José
, pp.
417
424
.
59.
Heckerman
,
D.
,
Meek
,
C.
, and
Cooper
,
G.
,
1999
, “
A Bayesian Approach to Causal Discovery
,”
Computation, Causation, and Discovery
,
C.
Glymour
and
G.
Cooper
, eds.,
MIT Press
,
Cambridge
, pp.
141
165
.
60.
Ben Ahmed
,
W.
, and
Yannou
,
B.
,
2009
, “
A Bayesian Learning of Probabilistic Relations Between Perceptual Attributes and Technical Characteristics of Car Dashboards to Construct a Perceptual Evaluation Model
,”
International Journal of Product Development, Special Issue on Engineering Emotional Design (EED) and Kansei Engineering (KE)
,
7
(
1–2
), pp.
47
72
.
61.
Cai
,
Z.
,
Sun
,
S.
,
Si
,
S.
, and
Yannou
,
B.
,
2011
, “
Identifying Product Failure Rate Based on a Conditional Bayesian Network Classifier
,”
Expert Sys. Applic.
,
38
(
5
), pp.
5036
5043
.10.1016/j.eswa.2010.09.146
62.
Bouckaert
,
R. R.
,
1993
, “
Probabilistic Network Construction Using the Minimum Description Length Principle
,”
Lect. Notes Comput. Sci.
,
747
, pp.
41
51
.10.1007/BFb0028174
63.
Lam
,
W.
, and
Bacchus
,
F.
,
1994
, “
Learning Bayesian Belief Networks: An Approach Based on the MDL Principle
,”
Comput. Intell.
,
10
, pp.
269
293
.10.1111/j.1467-8640.1994.tb00166.x
64.
BayesiaLab
,
2006
, “
Bayesia Tutorial Book
,” www.bayesialab.com.
65.
Aurisicchio
,
M.
,
Gourtovaia
,
M.
,
Bracewell
,
R.
, and
Wallace
,
K.
,
2008
, “
How to Evaluate Reading and Interpretation of Differently Structured Engineering Design Rationales
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
, pp.
345
358
.10.1017/S0890060408000231
66.
Bracewell
,
R.
,
Wallace
,
K.
,
Moss
,
M.
, and
Knott
,
D.
,
2009
, “
Capturing Design Rationale
,”
Computer-Aided Des.
,
41
, pp.
173
186
.10.1016/j.cad.2008.10.005
You do not currently have access to this content.